

Fast Track
to

PHP
By Team Digit

www.thinkdigit.com FAST TRACK 3

Credits
The People Behind This Book

EDITORIAL
Editor-in-chief Edward Henning
Assistant Editor Robert Sovereign-Smith
Writers Santanu Mukherjee, Supratim Bose, Nilay Agambagis

Soumita Mukherjee, Ranita Mondal

Resource
Development Runa Chowdhury

DESIGN AND LAYOUT
Layout Design Vijay Padaya, U Ravindranadhan
Cover Design Rohit Chandwaskar

© 9.9 Interactive Pvt. Ltd.
Published by 9.9 Interactive
No part of this book may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior written permission of the publisher.

January 2009
Free with Digit. Not to be sold separately. If you have paid separately for this book,
please e-mail the editor at editor@thinkdigit.com along with details of location of
purchase, for appropriate action.

FAST TRACK www.thinkdigit.com4

CONTENTS

Chapter 1 Introduction to PHP 7
1.1 Installation of PHP 7
1.2 Basics of PHP 10
1.3 Combining HTML and PHP 14

Chapter 2 Fundamentals of PHP 17
2.1 Variables 17
2.2 Data types 18
2.3 Operators 25
2.4 Control structure 30

Chapter 3 Arrays in PHP 33
3.1 Creating arrays 35
3.2 Multi dimensional arrays 37
3.3 Navigating arrays 39
3.4 Manipulating keys 41
3.5 Manipulating arrays 41
3.6 Serialising arrays 48

Chapter 4 Functions in PHP 51
4.1 User defined function 52
4.2 Function scope 54
4.3 Function arguments and return values 54
4.4 Internal function 57
4.5 Static variables 64

Chapter 5 Strings in PHP 66
5.1 Introduction to string 66
5.2 String functions 70

Chapter 6 Object Orientation in PHP 79
6.1 Getting started 79
6.2 Concept of class and object 79
6.3 Classes as namespaces 81
6.4 Objects as references 82
6.5 Implementing inheritance 85
6.6 Method overriding 86
6.7 Magic functions 87

Chapter 7 Working with forms 91
7.1 Global and environmental variable 91
7.2 Script to accept user input 92
7.3 Accessing input from various elements of form 94
7.4 Accessing inputs in an associative array 96
7.5 Get and Post method 98
7.6 File upload 99

Chapter 8 File manipulation in PHP 104
8.1 Testing files 104
8.2 Opening files 108
8.3 Closing files 109
8.4 Reading from a file 110
8.5 Writing to a file 111
8.6 Locking files 111
8.7 Miscellaneous shortcuts 113

Chapter 9 Saving state in PHP 114
9.1 Setting a cookie 114
9.2 Deleting a cookie 115
9.3 Creating session cookie 115
9.4 Working with query string 116
9.5 Session function 117
9.6 Session variables 118

Chapter 10 Advanced concepts in PHP 121
10.1 Date 121
10.2 Include 123
10.3 Email 125
10.4 Secure email 127
10.5 Error 129
10.6 PHP exception 135
10.7 PHP filter 136

Chapter 11 PHP and databases 141
11.1 Database concept 144
11.2 Database connection 145
11.3 Creating tables 146
11.4 Getting information on database 147
11.5 Inserting data to a table 148
11.6 Retrieving data from a table 151
11.7 Changing data of a table 152
11.8 Deleting data from a table 154

Chapter 12 PHP Project 155

www.thinkdigit.com FAST TRACK 5

PHP, an acronym for Hypertext Preprocessor, is an HTML
embedded scripting language. As a general purpose lan-
guage, it is used for web development and HTML. Apart

from being one of the potent, server-side scripting languages,
PHP is also used for creating interactive and dynamic web sites.
The basic syntax of PHP is similar to Perl and C. Due to these sim-
ilarities, PHP is often used with the Apache web server on various
operating systems.

In addition to supporting the Internet Server Application
Programming Interface (ISAPI), PHP is also used with IIS on
Windows. Originally designed for creating dynamic web pages, it
has developed as a popular medium for innovative web applica-
tions and has helped in developing some command line interface
mediums. Rasmus Lerdorf is credited with creating PHP in 1995.
Usually, PHP runs on a web server and is available on different oper-
ating systems and platforms. Its ability to run on most web servers
and operating systems for free has added to its demand and esteem.

PHP has the following benefits:
● Creates advanced user experience based on resources already

collected
● Quick solution for large and advanced web sites
● Convenient solutions for e-commerce
● Diverse scopes for creating online tools

According to recent statistical data, PHP is installed on more
than 20 million web sites and around 1 million web servers. The
source code for PHP is distributed under a license, thus making it
easily accessible to users.

1.1. Installation of PHP

There are two ways for installation with Windows. This can be
done either manually or by an installer. You require PHP, a web
browser and a web server.

7www.thinkdigit.com FAST TRACK

Introduction to PHP

www.thinkdigit.com

Normally, there are three common ways of using PHP:
● Desktop (GUI) applications
● Web sites and web applications (server-side scripting), and
● Command line scripting

Once you write the PHP script, the rest of the work is simple.
Assuming that you already have a web browser, and depending on
your operating system setup, you either have a web server for web-
space, or you can rent this from a hosting company. After follow-
ing these simple steps, you can simply upload your PHP code on
your rented server and see the results in your browser. PHP can be
compiled from the original source code if Microsoft Visual Studio
is already installed on the local drive.

PHP installation can be categorised into two parts:
Windows installer: Here you use the MSI technology of the Wix
Toolkit. In this method, PHP is installed and configured with PECL
and other built-in extensions. The Windows Installer also config-
ures many other popular web servers like Apache, Xitami and IIS.

Normal install: While running the MSI installer, follow the
instructions in the installation wizard.

While in some servers PHP has a direct module interface (such
as Microsoft Internet Information Server, iPlanet servers, Apache
and Netscape) many other servers support ISAPI. However, PHP
does not have a module support for web servers. You can host PHP
application with the CGI or Fast CGI processor.

It is often used for command-line scripting with the command
line executable. PHP is an advanced scripting language and can be
used to write desktop GUI applications, making use of the PHP-
GTK extension. Writing desktop GUI applications is different from
creating web pages. In a GUI application, PHP manages windows
and objects, but no HTML is produced.
Silent install: It method is helpful for system administrators. The
following command is useful during the installation of PHP in
silent mode:

msiexec.exe /i php-VERSION-win32-install.msi /q
Another useful formula to install PHP is:

I

8

PHP

FAST TRACK

INTRODUCTION TO PHP

msiexec.exe /i php-VERSION-win32-install.msi /q
INSTALLDIR=e: \php

The same command can also be used to target the ‘Apache
Configuration Directory’ (APACHEDIR), ‘the Sambar Server direc-
tory’ (SAMBARDIR), or the ‘Xitami Server directory’ (XITAMIDIR).

Some other installation features can also be presented to
install the mysqli extension and the CGI executable. See the fol-
lowing command:

msiexec.exe /i php-VERSION-win32-install.msi /q
ADDLOCAL=cgi,ext_php_mysqli

Some other features for installation with PHP have been developed
in recent times. These are mentioned below:
MainExecutable - php.exe executable
ScriptExecutable - php-win.exe executable
ext_php_* - various extensions (e.g.: ext_php_mysql for MySQL)
apache13 - Apache 1.3 module
apache20 - Apache 2.0 module
apache22 - Apache 2, 2 module
apacheCGI - Apache CGI executable
iis4ISAPI - IIS ISAPI module
iis4CGI - IIS CGI executable
NSAPI - Sun/iPlanet/Netscape server module
Xitami - Xitami CGI executable
Sambar - Sambar Server ISAPI module
CGI - php-cgi.exe executable
PEAR - PEAR installer

Manual - PHP Manual in CHM Format
While upgrading, you need to run the installer either in a graphic
pattern or perform the entire task manually. The upgraded install
method offers the installer a new installation option to uninstall
the old installation in lieu of the new one.

Manual installation steps: With the help of this guide, you can
manually install and configure PHP with a web server on
Microsoft Windows. To begin the manual installation, download
the ZIP binary distribution. Before entering any server specific
instructions, follow these steps:

9

PHP

www.thinkdigit.com FAST TRACK

IINTRODUCTION TO PHP

www.thinkdigit.com

To begin with, place the distribution file in a directory. Follow
specific installation methods for installing different PHP versions.
To install PHP 4, extract the files to C:\ and then the ZIP file will
expand into a folder named php-4.3.7-Win32. Similarly, if you are
installing PHP 5, extract the file to C:\php as the zip file does not
expand in the same way as PHP4.

Installing PHP on your operating system helps in many ways. It
can perform any task a CGI program can do. Like a CGI, PHP gen-
erates dynamic page content, collect form data, and even sends
and accepts cookies. Moreover, as an embedded scripting lan-
guage, PHP has certain other utilities like:
● Used for server-side scripting
● Writing client-side GUI applications, and
● Used for Command line scripting

Once installed on your Windows system, you can download
some extensions for additional functionality.

1.2 Basics of PHP

Apart from a simple text editor, no other additional software is
required to create PHP code.

First of all in order to print the information about PHP on your
server type the following code into the text editor installed on
your computer.

<?
phpinfo();
?>

This single line of PHP code phpinfo, commands the server
to print a standard information table. This provides informa-
tion about the server setup. In the above example, the line ends
with a semicolon and should not be missed, or else you will get
an error.

Save this script as phpinfo.php, and upload it to the server.
Access the URL of the script with your browser. If you can access
the script, you will see detailed information about PHP on your
server.

I

10

PHP

FAST TRACK

INTRODUCTION TO PHP

If the script fails to work and displays a blank page, then it
indicates either the code is wrong, or the server does not support
this function.

The basic features of PHP can be divided into three major sections:
● Escaping from HTML
● Instruction separation, and
● Comments

Escaping from HTML: Here, a file is analysed and simply parsed
until a special tag is reached. The entire text is interpreted as
PHP code.

Instruction separation: The instructions in PHP code are separat-
ed exactly the same way as in Perl or C. Each statement is termi-
nated with a semicolon. In PHP, the closing tag suggests the end
of a statement. The syntax is as follows:

<?php
echo “This is used for testing”;

?>

Comments: In PHP, C and C++ style comments are supported along
with Unix shell like comments. The comment comes at the end of
a line or in a PHP block of code.

Any PHP scripting block begins with <?php and ends with ?>.
PHP source code is flexible and can be placed anywhere in a docu-
ment. Such source code can never be viewed by selecting the View
Source option in the browser. The only thing that is apparent
while running PHP is the output in HTML format that is created as
the PHP scripts are executed on the server before actually sending
the outcome to the browser.

You can also begin a scripting block with (<?) and end with (?>).
This is just a shortened version. It is always advisable to use the
standard form of (<?php) in place of the shortened form (<?) as the
former is clearer and generally supported.

As in an HTML file, PHP files also have HTML tags in addition
to some PHP script code. Some important examples are given as

11

PHP

www.thinkdigit.com FAST TRACK

IINTRODUCTION TO PHP

www.thinkdigit.com

below using the text string “Hello World” and sending it to the
browser.

<html>
<body><?php
echo “Welcome”;
?></body>
</html>

Here, each line of PHP code ends with a semicolon. This semi-
colon actually acts as a separator between two sets of instructions.
Echo and Print are the two basic statements available to output
text with PHP.

PHP comments: While a single line comment in PHP is made
by using//, a large block comment is indicated by /* and */. The fol-
lowing example will make this clear:

<html>
<body><?php//Here is a comment/*
It is
inserted in the
block
*/?></body>
</html>

Since, PHP scripts are basically embedded in an HTML docu-
ment, you have the freedom to shift between HTML and PHP.

PHP has several important benefits such as:
● It is not restricted to HTML output
● It provides cross-platform functionality
● PHP converses with several network protocols
● It is compatible with a wide variety of databases
● Strong text processing facilities are available
● It supports most current web servers

PHP can be used effectively on different operating systems
such as Linux, Microsoft Windows, many Unix variants (like
Solaris, HP-UX and OpenBSD), Mac OS X, RISC OS, and many oth-
ers. As discussed earlier, in the present scenario, PHP supports
most web servers. It works as a CGI processor in servers support-

I

12

PHP

FAST TRACK

INTRODUCTION TO PHP

ing the CGI standard. Each PHP script remains enclosed between
two PHP tags commanding the server to recognise the informa-
tion as PHP.

As PHP is a server-side language, its scripts only run on the
operating web server. They never run in the user’s browser. With
PHP installed in your computer, you can use both procedural pro-
gramming and object oriented programming (OOP). In some
recent PHP versions, not every OOP feature is mentioned. Some
code libraries and large applications have been written by using
just the OOP codes.

Let’s see how we can declare some PHP code:
We can declare PHP code in three different forms:

“ <?
PHP Here we insert PHP codes
?>

“ <?php
PHP Here we insert PHP codes
php?>

“ <script language=”php”>
PHP Here we insert PHP codes
</script>

One of the essential features of PHP is that it supports several
databases and so you can write database-enabled web pages. PHP
supports the following databases:

Adabas D Ingres Oracle (OCI7 and OCI8)
dBase InterBase Ovrimos
Empress FrontBase PostgreSQL
FilePro (read-only) mySQL Solid
Hyperwave Direct MS-SQL Sybase
IBM DB2 MySQL Velocis
Informix ODBC Unix dbm

PHP also supports certain other services such as SNMP, LDAP,
POP3, IMAP, HTTP, COM (on Windows), NNTP and many others. The
language has certain useful text processing features from the

13

PHP

www.thinkdigit.com FAST TRACK

IINTRODUCTION TO PHP

www.thinkdigit.com

POSIX Extended or Perl regular expressions to analysing XML doc-
uments. Some of the important functions performed here include
CyberMUT, Cybercash payment, VeriSign Payflow Pro and CCVS
functions commendable to use for online financial programs.

1.3 Combining HTML and PHP

PHP and HTML are closely related to each other and often function
together. PHP generates HTML and this HTML passes information
to PHP. The two together are seen in the following PHP script
which includes HTML:

1: <!DOCTYPE html PUBLIC
2: “-//W3C//DTD XHTML 1.0 Strict//EN”
3: “http://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd”>
4: <html>
5: <head>
6: <title>Listing 3.2 A PHP Script Including

HTML</title>
7: </head>
8: <body>
9: <div>

10: <?php
11: print “hello world”;
12: ?>
13: </div>
14: </body>
15: </html>

Let’s discuss how to make a form in HTML and fill the form
with data using PHP. There are several methods in PHP through
which you can make a form and prepare data for that form. Begin
your task by making an HTML form to retrieve a user date. PHP and
HTML, both are often combined to make bullets, check boxes,
input fields and text fields. Both can be used for making a form
and collecting personal details of users.

Input Fields:
The input fields in HTML are easily understandable. The following
code would present a simple HTML form document.

I

14

PHP

FAST TRACK

INTRODUCTION TO PHP

Code:
<html>
<head>
<title>individual information</title>
</head>
<body>
<form method=”post” action=”<?php echo $PHP_TUTO-

RIAL;?>”>
First Name:<input type=”text” size=”10”

maxlength=”10” name=”Fnaming”>:

Last Name:<input type=”text” size=”10”

maxlength=”46” name=”Lnaming”>:

Radios and checkboxes:
PHP also plays a significant role while making radio buttons and
checkboxes in HTML. The radio buttons have associated with them
value attributes and the text equated to this value is displayed by
the browser when the variable is set in PHP.

The check boxes in the HTML format are made by using arrays.
With PHP, the check boxes are placed in an array specified by
brackets at the end.

Code:
...
Sex::

Male:<input type=”radio” value=”Male”

name=”Sex”>:

Female:<input type=”radio” value=”Female”

name=”Sex”>:

Please choose type of dwelling::

Steak:<input type=”checkbox” value=”Steak”

name=”food[]”>:

Sandwich:<input type=”checkbox” value=”Sandwich”

name=”food[]”>:

Fowl:<input type=”checkbox” value=”Fowl”

name=”food[]”>:

Text areas:
In PHP, the text areas are input fields. These are handled according
to the wrap attribute setting. The following code will illustrate this:

15

PHP

www.thinkdigit.com FAST TRACK

IINTRODUCTION TO PHP

www.thinkdigit.com

...
<textarea rows=”4” cols=”10” name=”quotation”

wrap=”physic”>Insert your preferred
quotation!</textarea>:

Dropdown lists and selection lists:
Dropdown lists and selection lists are similar to radio buttons and
checkbox selections. While naming a selection form, the name
attributes should always be at the beginning. After this put the
appropriate values in the options that are grouped under the
select tag.

Code:
Select a Level of Learning:

<select name=”Learning”>
<option value=”Graduation”>Graduation</option>
<option value=”PostGraduation”>PostGraduation
</option>
<option value=”Institute”>Institute</option>
</select>:

Select your favourite time of Daytime:

<select name=”TofD” size=”3”>
<option value=” Day “>Dawn</option>
<option value=”Daytime”>Daytime</option>
<option value=”Dark”>Dark</option></select>:

Always check the code and look for bugs and errors
while going through each of the names. The fol-
lowing code will make the indication clear.
“ http://www.indusnetacademy.com/store/”>
<html>
<head>
<title>A PHP Script Including HTML</title>
</head>
<body>
<div>

<?php
print “Welcome”;
?>
</div>
</body>
</html>

I

16

PHP

FAST TRACK

INTRODUCTION TO PHP

2.1 Variables:

A variable can hold a value that can be changed during the course
of the execution of the script. The values can either be explicitly
changed or by performing some operation on it. They are similar
to variables you used back in school Algebra.

Let’s look at the syntax of a PHP variable:
$variable_name = Value;
Example:
<?php
$learning = “Learning Variable!”;
$x_numeral = 8;
$first_name = ‘John’;
$lastName = ‘Denver’;
$nextNumeral = 16;
?>

Here, we have inserted a variable name and set the value as per
our need. The second line of the program with ‘$learning’ variable
ends with a semicolon sign (;) to mark the closing of the statement
“Learning Variable”. The quotation mark (“ “), inserted in the sec-
ond line, is not used in the second variable (‘$x_numeral) as it is
an integer.

PHP is a case sensitive programming language. Here
‘$x_numeral’ variable differs from the variable ‘$X_numeral’
because of the use of small ‘x’ in the first variable and capital ‘X’
in the second variable. The dollar sign ($) at the beginning of the
variable is important as it is exclusively used in PHP. It instructs
the PHP engine that the inserted code with this dollar sign is a
variable. A variable in PHP always starts with an underscore ‘_’ or
with a letter (x, X). You cannot begin a variable with a number. It
is a common practice to separate variable names with underscore

17www.thinkdigit.com FAST TRACK

Fundamentals of
PHP

www.thinkdigit.com

(as in $first_name) when two or more words are used to name
them, or by converting the first letter of each word to uppercase
(as in $lastName). This is done simply to make the name more
readable.

Now let us look at the various types of variables:
● Integer: These are whole number(s) (-9, 9, 99, 999, etc).
● Double/Float: These are floating point numbers or real numbers

(0.99, 99.0, etc).
● String: These are strings of characters (“Learn”, “Java and
JavaScript”). This type of variable holds both words and sentences.

Boolean: This holds only two types of data: True and False.
Array: This type of variable holds a list of items.
($student = array(“class”, “section”, “roll”);
Object: This is an instance of a class.
The variable can be accessed from within the ‘Variable Scope’

where it was defined. A variable cannot be accessed if it was
defined in a completely different scope. There are three types of
Variable Scope: Superglobal, Global and Function.

Superglobal: The Superglobal variable is a type of pre-defined
array in PHP. These variables can be accessed from every section of
the code.

Global: Global variables can be viewed throughout the script if
these are declared in it.

Function: Local variables are declared in a function scope.
These variables are exclusively ‘local’ to the function in which
they are declared. These variables cannot be accessed from outside
the Function where it was defined.

In PHP, there are some in-built functions that can check the
authenticity of a variable. The function ‘isset()’ is used to check the
existence of a variable. It returns Boolean result (True or False). To
remove a variable from the memory, the ‘unset()’ function is used.
The ‘empty()’ function is used to check whether a variable has
been defined and holds a non-empty value.

2.2 Data Types:

‘Data Types’ can be divided into two groups: ‘Core Data Type’ and
‘Special Data Type’.

II

18

PHP

FAST TRACK

FUNDAMENTALS OF PHP

The ‘Core data type’ group includes Integer, Float/Double,
String and Boolean. The ‘Special data types includes Null, Array,
Object and Resources.

Integers: As discussed earlier, Integers are whole numbers. It
does not include precision. Negative values are also regarded as
Integers.

Example: -32, 32, 986, 1245, etc.
Floating-Point Number or Double: Fractional numbers are

grouped as Floating point numbers or Double data type. Simply
put, Double variables hold numbers with decimal points.

Example: 123.56, 5.6, etc.

The syntax of the ‘Floating-Point Number or Double is as follows:
<?php
$a = 1.234;
$b = 1.2e3;
$c = 7E-10;
?>

Previously, a different syntax was used to define the ‘Floating
Point Number or Double. Now let’s look at that syntax:

LNUM [0-9]+
DNUM ([0-9]*[\.]{LNUM}) | ({LNUM}[\.][0-

9]*)
EXPONENT_DNUM (({LNUM} | {DNUM}) [eE][+-]? {LNUM})
Example:
<?php
//TRIAL 1
$numeral = 216897510871;
$original_numeral = $numeral;

$numeral *= 11123.74;
$numeral /= 11123.74;

if ($original_numeral == $numeral) {
echo “Test 1: Value Equivalent
”;
}
else {
echo “Test 1: Value NOT Equivalent
”;
}

19

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

www.thinkdigit.com

//TRIAL 2
$numeral = 216897510871;
$original_numeral = $numeral;

$numeral *= 11123.75;
$numeral /= 11123.75;

if ($original_numeral == $numeral) {
echo “Test 2: Value Equivalent
”;
}
else {
echo “Test 2: Value NOT Equivalent
”;
}
?>

The output is as follows:
Test 1: Value Equivalent
Test 2: Value NOT Equivalent

String Literals:
We have already discussed that Strings hold both words and sen-
tences. These are always inserted within quotation marks. If it
starts with a single quotation mark then it must end with the
same. If a single quotation is inserted at the beginning of a string
then it can not be closed with a double quotation mark. If the quo-
tation marks are inserted in a code without any characters, then it
will be treated as ‘Null’ string. A numeric character is treated as a
string if it is inserted within quotation marks. For example, if the
number 9 is inserted in a PHP code, then it will be treated as a
number. On the other hand, if 9 is inserted in a PHP code, then it
will be treated as a string.

Example:
“It is an example of a string with double quotes”
‘It is an example of a string with single quotes’
“It is also an example of ‘a string’ where the

single quote will be ignored”
‘It is an example of “a string” where the double

quote will be ignored’
“4”
“ “ (Null string)

II

20

PHP

FAST TRACK

FUNDAMENTALS OF PHP

‘Here-docs’
‘Here-docs’ or ‘Here Documents’ is a special type of quoting that
enables you to quote a large block of text within a script. Here,
multiple print statements and quotation marks are not used. The
PHP engine treats this block of code as a double quoted statement.
‘Here-docs’ is extremely useful when a large block of HTML is used
in a PHP script. ‘Here-docs’ usually begin and end with a delimiter
word, a series of one or more characters that mark the border
between various sections in a data system. Numeric characters, let-
ters and underscores can be inserted in the delimiters. In PHP,
delimiters are written in capital letters. Three less than signs (<<<)
are inserted at the beginning of a delimiter (Example, <<<HERE-
DOCS). Look at the following example:

Example:
print <<<LEARNING_HEREDOC_EXAMPLE
<text here>
...
< more text>
...

LEARNING_HEREDOC_EXAMPLE

Let’s look at the following example for better understanding:
Example:
<?php
$string = <<<EOD

Example of PHP heredoc stringing
across multiple lines of stringing
learning through example of using heredoc syntax.
EOD;

/* additional compound example, with variables.
*/

class foo
{

var $foo;
var $bar;

function foo()

21

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

www.thinkdigit.com

{
$this->foo = ‘Foo’;

$this->bar = array(‘Bar1’, ‘Bar2’,
‘Bar3’);

}
}

$foo = new foo();
$forename = ‘Jack’;

echo <<<EOT
My forename is “$forename”. I am printing $foo-

>foo.
Now, I am printing {$foo->bar[1]}.
This should print a capital ‘A’: \x41
EOT;
?>

The output of the above program is as follows:
My forename is “Jack”. I am printing some Foo.
Now, I am printing some Bar2.
This should print a capital ‘A’: A

Now-docs
Now-doc is similar to Here-doc, and the only difference is that it is
a single quoted string while here-doc is a double quoted string.

Example:
<?php
$string = <<<’EOD’
Another example of stringing
across compound lines
by using nowdoc syntax.
EOD;

/* More compound example, with variables. */
class foo
{

public $foo;
public $bar;

function foo()

II

22

PHP

FAST TRACK

FUNDAMENTALS OF PHP

{
$this->foo = ‘Foo’;

$this->bar = array(‘Bar1’, ‘Bar2’,
‘Bar3’);

}
}

$foo = new foo();
$forename = ‘MyForename’;

echo <<<’EOT’
My forename is “$forename”. I am printing some

$foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should not print a capital ‘A’: x41
EOT;
?>

The output of the above program is as follows:
My forename is “$forename”. I am printing some $foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should not print a capital ‘A’: \x41

Escape Sequences:
In PHP, a single character, headed by a back slash (\), is an Escape
character. The HTML <pre> tag is used to display escape sequences
in the user’s browser. The PHP engine cannot interpret the escape
sequences without using the HTML<pre> tag.

EEssccaappee SSeeqquueenncceess FFuunnccttiioonnss
\” Used to print the next character as a double

quote, not as a string closer
\’ Used to print the next character as a single

quote, not a string closer
\n Used to print a new line character (remember

our print statements?)
\t Used to print a tab character
\r Used to print a carriage return

(not used very often)
\$ Used to print the next character as

a dollar, not as part of a variable

23

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

www.thinkdigit.com

\\ Used to print the next character
as a backslash, not an escape character

Example:
<?php

$ExampleString = “It is an \”escpd\” string”;
$ExampleSingularString = ‘It \’will\’ act’;
$ExampleNonVariable = “I have \$zilch in

Example pocket”;
$ExampleNewline = “It ends with a line

return\n”;
$ExampleFile =

“c:\\windows\\system32\\Examplefile.txt”;
?>

Boolean literals:
Boolean literals return only two values: true and false. As discussed,
PHP is a case sensitive programming language. You can only use
the defined set of Boolean values like, yes/no, on/off, 1/0, etc.

Look at the syntax of the Boolean literals:
<?php
$foo = True; // assign the value TRUE to $foo
?>
Example:
<?php
// == is an operator which test
// equality and returns a Boolean value
if ($action == “display_version”) {
echo “The version is 1.23”;
}
// this is not necessary...
if ($display_dividers == TRUE) {
echo “<hr>\n”;
}
// ...as you can simply type
if ($display_dividers) {
echo “<hr>\n”;
}
?>

II

24

PHP

FAST TRACK

FUNDAMENTALS OF PHP

Null:
Null variable is assigned the ‘NULL’ value. A PHP engine will con-
sider a variable as NULL if you do not set it.
Array:
The Array variables hold multiple values. We will discuss ‘Array’ in
detail in the ‘Arrays in PHP’ section (Unit: 03).
Object:
Objects are used while working with the OOPs (Object Oriented
Programming Language). We will discuss object in detail in the
‘Object Orientation in PHP’ section.
Resource:
The Resource variables hold references to another external
resource like file handler, database object, etc.

2.3 Operators

In PHP, variables and values are performed by Operators, that is,
they operate on variables and values in PHP. Look at the following
expression:

$z = $x + $y;

In the above expression x and y are two numbers. It is clear
from the above expression that it would add x with y and the sum
is z. The plus sign (+) inserted between x and y is an operator
(Arithmetic Operator).

Operators used in PHP are categorically grouped in various sec-
tions:
1. Assignment Operators
2. Arithmetic Operators
3. Comparison Operators
4. String Operators
5. Combined Operators

Now let’s discuss in detail.
“ Assignment operators
You can use the Assignment Operator to assign a value to a vari-
able. Often a variable is assigned a value of another variable. In
this case assignment operators are used. The equal character (=) is
used here. Look at the following expression:

25

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

www.thinkdigit.com

Example:
$first_var = 5;
$second_var = $first_var;
Here the values of both ‘$first_var’ and ‘$sec-

ond_var’ variables are assigned the same value i.e.
5.

Arithmetic operators
Look at the various Arithmetic Operators:
Operators Name Function
+ Addition This operator is used to add two values
- Subtraction This operator is used to subtract the

second value from the first one
* Multiplication This operator is used to multiply

two values
/ Division This operator is used to divide the first

value by the second value
% Modulus This operator is used to divide the first

value by the second value and it returns
only the remainder

Example 01:
$adding = 2 + 4;
$minus = 6 - 2;
$multiply = 5 * 3;
$divide = 15 / 3;
$percent = 5 % 2;
echo “Result adding: 2 + 4 = “.$adding.”
”;
echo “Result minus: 6 - 2 = “.$minus.”
”;
echo “Result multiply: 5 * 3 = “.$multiply.”
”;
echo “Result divide: 15 / 3 = “.$divide.”
”;
echo “Result percent: 5 % 2 = “ . $percent

The output of the above program is as follows:
Result adding: 2 + 4 = 6
Result minus: 6 - 2 = 4
Result multiply: 5 * 3 = 15
Result divide: 15 / 3 = 5
Result percent: 5 % 2 = 1.

II

26

PHP

FAST TRACK

FUNDAMENTALS OF PHP

Comparison operators
The ‘Comparison Operators’ verify the relationship between a vari-
able and its value. These operators are usually inserted within a
conditional statement and it returns boolean values like true and
false. Look at the various types of Comparison Operators:
Comparison Operators Name Function
= = Equal This operator is used to

check if the two variables
hold equal values.

= = = Identical This operator is used to
check whether two vari-
ables hold equal values
and the data type of them
are also the same.

! = Not Equal This operator is used to
check if the two variables
hold unequal values.

! = = Not Identical This operator is used to
check for unequal values
and for the different data
types.

< Less than This operator is used to
check if the value of one
variable is lesser than
that of another.

> Greater than This operator is used to
check if the value of one
variable is greater than
that of another.

< = Less than This operator is used to
or Equal to check if the value of one

variable is less than or
equal to the value of
another variable.

> = Greater than This operator is used to
or Equal to check if the value of one

variable is greater than or
equal to the value of
another variable.

27

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

www.thinkdigit.com

String operators
There are two types of ‘String Operators’: the Concatenating
Operator (‘.’) and the Concatenating Assignment Operator (‘.=’).
The Concatenating Operator joins the right and the left string into
a single string. The Concatenating Assignment Operators add the
argument that is placed on the right side of the equal operator
with the argument placed on the left side of the ‘equal’ operator.

Example:
$first_string = “Welcome”;
$second_string = “ Jack”;
$third_string = $first_string . $second_string;
echo $third_string . “!”;

The output of the above program is as follows:
Welcome Jack!

Combined operators
As the name suggests, the Combined Operators are the combina-
tions of different types of operators.

Look at the various types of Combined Operators:
Operator Name Example
+= Plus & Equals $a += 4;
-= Minus & Equals $a -= 6;
*= Multiply & Equals $a *= 4;
/= Divide & Equals $a /= 3;
%= Modulus & Equals $a %= 6;
.= Concatenation & Equals $example_str.=”Welcome”;

II

28

PHP

FAST TRACK

FUNDAMENTALS OF PHP

There are some other types of operators used in PHP. Let’s look
at those:

Logical operators:
Logical Operators Functions
And Checks if two or more statements are true
&& Same as And
Or Checks if at least one of two statements is

true
|| Same as Or
Xor Checks if only one of two statements is true
! Checks if a statement is not true

Increment and decrement operators:
Increment / Decrement Name Function
Operator
++value Pre-Increment This operator adds 1 to

the value before pro-
cessing the expression
that can use it.

--value Pre-Decrement This operator sub-
tracts 1 from the value
before processing the
expression that uses
the value

value++ Post-Increment This operator adds 1 to
the value after pro-
cessing the expression
by which the value can
be used

value-- Post-Decrement This operator sub-
tracts 1 from the value
after processing the
expression which uses
the value

29

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

www.thinkdigit.com

2.4 Control structure
The ‘Control Structure’ controls the program flow of PHP. It can
also check whether a block of code is executed or not.
The syntax of the ‘Control Structure’ is as follows:

<?php
if (expression) statement
?>

Let’s look at various types of ‘Control Structure’:
● if
● elseif/else if
● Alternative syntax for control structures
● while
● do-while
● for
● foreach
● switch
● if: It is used for conditional execution of code fragments. It
returns Boolean values (true/false).

Look at the syntax of ‘if’ Control Structure:
if (expr)
statement

Example:
<?php
if ($x > $y) {

echo “x is bigger than y”;
$y = $x;

}
?>

else: If an expression in the ‘if’ statement returns false, then
the ‘else’ ‘Control Structure’ is used.

Example:
<?php
if ($x > $y) {

echo “x is bigger than y”;
} else {

II

30

PHP

FAST TRACK

FUNDAMENTALS OF PHP

31

PHP

www.thinkdigit.com FAST TRACK

IIFUNDAMENTALS OF PHP

echo “x is NOT bigger than y”;
}
?>

elseif/else if: It is a combination of ‘if’ and ‘else’ Control Structure.
If the ‘if’ Control Structure’ returns a ‘false’ value, then a different
statement is executed by using the ‘else’ Control Structure’.

Example:
<?php
if ($x > $y) {

echo “x is bigger than y”;
} elseif ($x == $y) {

echo “x is equal to y”;
} else {

echo “x is smaller than y”;
}
?>
“Alternative syntax for control structures: There are some

alternative syntax for some control structures like, ‘if’, ‘while’,
‘for’, ‘foreach’ and ‘switch’. It changes the opening brace to a colon
sign (:) and closing brace to endif;, endwhile;, endfor;, endforeach;,
or endswitch.

Example:
<?php
if ($x == 6):

echo “x equals 6”;
echo “...”;

elseif ($x == 7):
echo “x equals 7”;
echo “!!!”;

else:
echo “x is neither 6 nor 7”;

endif;
?>

while: The ‘while’ Control Structure executes the nested state-
ments repetitively until the ‘while’ statement returns a false
value. The syntax of ‘while’ control structure is as follows:

while (expr)
statement

www.thinkdigit.com

do-while: It is very much similar to the ‘while’ Control Structure.
The only difference is that here the truth expression is checked at
the end of every repetition. Look at the syntax of ‘do-while’:

<?php
$i = 0;
do {

echo $i;
} while ($i > 0);
?>

for: This is one of the complex loops in PHP. The syntax of the ‘for’
control structure is as follows:

for (expr1; expr2; expr3)
statement

foreach: This Control Structure is first introduced in PHP. Have a
look at its syntax:

foreach (array_expression as $value)
statement

foreach (array_expression as $key => $value)
statement

switch: This Control Structure is similar to a series of ‘if’ state-
ments. We will discuss it in detail in our later section.

II

32

PHP

FAST TRACK

FUNDAMENTALS OF PHP

3. Arrays in PHP

In PHP, arrays are ordered data maps and are used to store, man-
age and operate a set of variables. To put it simply, an array is a
data structure that holds multiple data within a single identifier.
There are two parts in an Array - Values and Keys. While Values
contain information to be stored, Keys are used to identify these
values. It is allocated to a single variable. It holds significant infor-
mation, popularly termed as Array Elements. This information can
be used for a number of times in a program. Either non negative
Integers or Strings are used as Keys. The arrays that use non-nega-
tive Integers as Keys are termed as Scalar Arrays. These are
Associative Arrays that use Strings as keys. An Array may contain
different Array(s) popularly known as Multidimensional Arrays.
The syntax of an Array is as follows:

$array[key] = value;
Look at the simple example below:
Example:
$student_array[0] = “Rohit”;
$student_array[1] = “Rahul”;
$student_array[2] = “Sourav”;
$student_array[3] = “Abdul”;

In the above example, the names of the students (Rohit, Rahul,
Sourav and Abdul) are the Values and the numeric characters (0, 1,
2 and 3) are the Keys of this array.

Scalar array:
The numeric values are used as ‘Keys’ in Scalar Array. To put it
simply, we can use integers as index numbers in scalar arrays. In
case of scalar arrays, keys start from zero (0). Look at the examples
below:

Example 1:
<?php
$colors = array(“red”,”brown”,”yellow”);
print_r($colors);

33www.thinkdigit.com FAST TRACK

Arrays in PHP

www.thinkdigit.com

?>

The output of this program is as follows:
Array ([0] => red [1] => brown [2] => yellow)

Here, multiple values are simultaneously assigned to an array.
It is also possible to assign values to an array one by one using keys
as shown below:

Example 2:
$numerals = array();
$numerals[]=”3”;
$numerals[]=”9”;
$numerals[]=”11”;
$numerals[]=”7”;
Associative array:

Associative arrays are indexed with strings in lieu of numbers.
Look at the example below:

Example:
<?php
$marks[“Ram”] = 80;
$marks[“Raj”] = 60;
$marks[“Rahul”] = 50;
$marks[“Rajam”] = 0;

echo “Ram Obtained- “ . $marks[“Ram”] . “
”;
echo “Raj Obtained- “ . $marks[“Raj”] . “
”;
echo “Rahul Obtained- “ . $marks[“Rahul”] . “
”;
echo “Rajam Obtained- “ . $marks[“Rajam”];
?>

The output of this program is as follows:
Ram Obtained- 80
Raj Obtained- 60
Rahul Obtained- 50
Rajam Obtained- 0
asort() - This function is used to sort an asso-

ciative array on values.

III

34

PHP

FAST TRACK

ARRAYS IN PHP

arsort() - This function is used to sort an asso-
ciative array on values in reverse order.

3.1 Creating arrays

The array() language constructor is used to create an array in PHP.
Look at the syntax below:
array([key =>] value

, ...
)
// The key may be either an integer or a string
//The value is any reusable value

Let’s see how we can create an array by using the array() func-
tion:

$countries = array (“INDIA”, “PAKISTAN”, “JAPAN”)
Here we can access the second element by using

the index “1”. Let’s see:
echo “$country[1]”;

The output of this program is:
“PAKISTAN”.

Now let’s see how we can create an array by using an array
identifier:
$countries[] = “INDIA”;
$countries[] = “PAKISTAN”;
$countries[] = “JAPAN”;

Here, the values are inserted in the same order as the earlier
one. Using the index number, we can place the data as per our
requirement. You can insert these index numbers inside the
square brackets. Look at the following code:

$countries[1] = “PAKISTAN”;
$countries[2] = “JAPAN”;
$countries[0] = “INDIA”;

Example 1:
<?php
$learn = array(foo => “I am learning how to cre-

ate an array”, 12 => true);

35

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

echo $learn[foo]; // I am learning how to create
an array

echo”
”;
echo $learn[12]; // Unit 01
?>

The output of this program is as follows:
I am learning how to create an array
1
While creating an array, first we denote a variable name as an

array:
<?php
$learning = array();
?>
Next, specify the array that will hold the specified value. Use a

comma to separate the listed values of an array. Look at the PHP
code below:

<?php
$learning = array(
“Basic”,
“Intermediate”,
“Advanced”
);
?>

Example 2:
<?php
// Learning to create array.
$array_learning = array(10, 20, 30, 40, 50);
print_r($array_learning);

// Let’s delete every item and we will leave the
array itself intact:

foreach ($array_learning as $i => $value) {
unset($array_learning[$i]);
}
print_r($array_learning);

// Append an item (note that the new key is 50,
instead of 0).

$array_learning[] = 60;

III

36

PHP

FAST TRACK

ARRAYS IN PHP

print_r($array_learning);

// Re-index:
$array_learning = array_values($array_learning);
$array_learning[] = 70;
print_r($array_learning);
?>

The output of this program is as follows:
Array ([0] => 10 [1] => 20 [2] => 30 [3] => 40 [4] => 50) Array () Array
([5] => 60) Array ([0] => 60 [1] => 70)

3.2 Multidimensional arrays

Multidimensional Arrays are the most complex arrays in PHP. As
the name suggests, these are data structures that hold various
other arrays. Various arrays are used as sub-array elements in a
Multidimensional Array. We can easily identify the difference
between a single dimensional array and a multidimensional array.
In a single dimensional array, we set a value for a single key and
assign a number of values to several keys. For example, we may
assign values like ‘class’, ‘section’, ‘roll number’ to a single dimen-
sional array that contains information on ‘Student’. On the other
hand, a multidimensional array ‘Student’ may include the break
up like, ‘Personal data’ ‘Marks’, ‘Attendance,’ etc. Each of these sec-
tions is a single dimensional array that is treated as a separate
array.

Look at the example below:

Example 1:
Here we have created a ‘Multidimensional Array’ by using the

automatically assigned ID keys:
$relatives = array
(
“Robin”=>array
(
“Ram”,
“Bharat”,
“Adam”
),

37

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

“Raj”=>array
(
“Gili”
),
“Brate”=>array
(
“Sita”,
“Lorel”,
“Charles”
)
);

Example 2:
<?php
$vegetables = array (“vegetables” => array (“a”

=> “potato”,
“b” => “banana”,
“c” => “spinach”
),
“numbers” => array (1,
2,
3,
4,
5,
6
),
“holes” => array (“first”,
5 => “second”,
“third”
)
);

// These are some examples to address values in the array that is
mentioned above

echo $vegetables[“holes”][5]; // prints “second”
echo $vegetables[“vegetables”][“a”]; // prints

“potato”
unset($vegetables[“holes”][0]); // remove “first”

// This is developing a new multi-dimensional array
$juices[“spinach”][“green”] = “good”;

III

38

PHP

FAST TRACK

ARRAYS IN PHP

?>

3.3 Navigating arrays

Here we need to know the number of elements while accessing
these.

“ sizeof($arr)
In PHP, the sizeof($aar) function returns the number of ele-

ments in the array. This can also be used to initialise a loop count-
er while processing the array.

Example:

<?php
$data = array(“yellow”, “green”, “red”);

echo “This Array includes “ . sizeof($data) . “
elements”;

?>

The output of this program is as follows:
This Array includes 3 elements.
There is another function count() that also returns the number of
elements of an array.

To access the elements of a scalar array, you can use the ‘for’ state-
ment. For example, the elements of the array in the above exam-
ple can be displayed by using the ‘for’ statement. Look at the code
below:
for($a=0;$a<3;$a++)
echo “
”.$data[$a];

The elements of an associative array cannot be accessed using the
‘for’ statement. In this case, we can use the ‘foreach’ statement.
The elements of a scalar array are also accessible through this
statement. The following example can also be written by using the
‘foreach’ statement. See the code below:

foreach($data as $a)
echo $a;

Now let us see how to access the elements of an associative
array by using the ‘foreach’ statement. We can use the ‘foreach’

39

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

statement in the following way:
foreach($array_name as $key=>$val)

Example:
<?php
$asso_array=array(Roll=>1,
Name=>”Tom”,
Grade=>”B”);
foreach($asso_array as $abc=>$xyz)
echo $abc.”=”.$xyz.”
”;
?>

The output of this program is:

Roll=1
Name=Tom
Grade=B

The each($arr) function is used to repetitively navigate to an
array. When the each() function is called, it returns the current
key as well as the value of the array. Here, the array cursor is also
moved forward by one element. This function is popularly used in
a loop.

Example:
$data = array(“Protagonist” => “Jack”, “Jam” =>

“Harry”);
while (list($key, $value) = each($data)) {
echo “$key: $value \n”;
}
?>

The output of this program is:
Protagonist: Jack
Jam: Harry

The techniques described above can be used to access the ele-
ments of multidimensional array.

III

40

PHP

FAST TRACK

ARRAYS IN PHP

3.4 Manipulating Keys

Keys play an important role in an array, especially in an associative
array. There are some functions that can manipulate the keys of an
array. Some of these functions are given below:

“ array_keys($arr)
The array_keys($arr) function is used to recover the keys from

an associative array. This function receives a PHP array and a new
array is returned. This new array contains only the keys of the
array. The complementary part of this function is the array_val-
ues() function.

Example:
$data = array(“Protagonist” => “Jack”, “Milliate”

=> “Jill”);
print_r(array_keys($data));
?>

The output of this program is as follows:
Array
(
[0] => Protagonist
[1] => Milliate
)

3.5 Manipulating arrays

Now let’s see how various functions are used in PHP to manipulate
arrays:

“ array_values($arr)

array_values($arr) function receives a PHP array. It returns a
new array that contains only the values of the array and excludes
the keys. The array_keys() function is used as the complementary
part of the array_values($arr) function. You can use the array_val-
ues($arr) function to recover values from an associative array.

Example:
<?php
$data = array(“Protagonist” => “Jack”, “Milliate”

=> “Jill”);

41

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

print_r(array_values($data));
?>

The output of this program is as follows:
Array
(
[0] => Jack
[1] => Jill
)

“ array_pop($arr)

The array_pop($arr) function removes an element from the
end of an array and returns its value.

Example:
<?php
$data = array(“Jack”, “Milliate”, “Mack”);
array_pop($data);
print_r($data);
?>

The output of this program is as follows:
Array
(
[0] => Jack
[1] => Milliate
)
“ array_push($arr, $val)

The array_push($aar,$val) function inserts an element at the
end of an array.

Example:
<?php
$data = array(“Jack”, “Jill”, “Dick”);
array_push($data, “Harry”);
print_r($data);
?>

The output of this program is as follows:
Array

III

42

PHP

FAST TRACK

ARRAYS IN PHP

(
[0] => Jack
[1] => Jill
[2] => Dick
[3] => Harry
)
“ array_shift($arr)

The array_shift($aar) function is used to remove an element
from the beginning of an array.

Example:
<?php
$data = array(“Jack”, “Jam”, “Dick”);
array_shift($data);
print_r($data);
?>

The output of this program is as follows:

Array
(
[0] => Jam
[1] => Dick
)
“ array_unshift($arr, $val)

The array_unshift($aar,$val) function adds an element to the
beginning of an array.

Example:
<?php
$data = array(“Jack”, “Jill”, “Dick”);
array_unshift($data, “Sana”);
print_r($data);
?>

The output of this program is:
Array
(
[0] => Sana
[1] => Jack

43

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

[2] => Jill
[3] => Dick
)
“ sort($arr)
The sort($aar) function sorts the elements in an array in a

ascending order. In the following example, the values of the ele-
ments in an array of characters are arranged in ascending alpha-
betical order.

Example:
<?php
$data = array(“b”, “d”, “a”, “c”);
sort($data);
print_r($data);
?>

The output of this program is as follows:

Array
(
[0] => a
[1] => b
[2] => c
[3] => d
)

There are some other functions that are used to sort data in a
particular order. These are rsort(), asort(), arsort(), ksort(), krsort().

rsort() - Sorts scalar array in reverse order.
asort() - Sorts associative array by values.
arsort() - Sorts associative array by values in reverse order.
ksort() - Sorts associative array by ‘Keys’.
krsort() - Sorts associative array by ‘Keys’ in reverse order.

“ array_flip($arr)

The array_flip($arr) function interchanges the keys and the
values of an Associative array.

Example:
<?php
$data = array(“x” => “Mangoes”, “y” =>

III

44

PHP

FAST TRACK

ARRAYS IN PHP

“Potatoes”);
print_r(array_flip($data));
?>

The output of this program is as follows:
Array
(
[Mangoes] => x
[Potatoes] => y
)

“ array_reverse($arr)
The array_reverse($arr) function reverses the order of the ele-

ments in an array.

Example:
<?php
$data = array(11, 21, 26, 61);
print_r(array_reverse($data));
?>

The output of this program is:
Array
(
[0] => 61
[1] => 26
[2] => 21
[3] => 11
)
“ array_merge($arr)

The array_merge($aar) function merges two or more arrays.
This helps to create a merged array. This function is also used to
combine multiple data into a single structure.

Example:
<?php
$data1 = array(“ram”, “shyam”);
$data2 = array(“jack”, “jam”);
print_r(array_merge($data1, $data2));
?>

45

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

The output of this program is:

Array
(
[0] => ram
[1] => shyam
[2] => jack
[3] => jam
)
“ array_rand($arr)
The array_rand($arr) function selects one or more

than one random elements from an array.
Example:
<?php
$data = array(“yellow”, “pink”, “green”);
echo “Display the color “ .

$data[array_rand($data)];
?>

The output of this program is:
Display the color green
“ array_slice($arr, $offset, $length)

The array_slice($aar,$offset,$length) function is useful to
extract the elements of an array. It extracts the elements from
array offset $offset. This extracting is continued until the array
slice $length element is elongated.

Example:
<?php
$data = array(“pink”, “yellow”, “green”, “red”);
print_r(array_slice($data, 1, 2));
?>

The output of this program is:
Array
(
[0] => yellow
[1] => green
)
“ array_unique($data)

III

46

PHP

FAST TRACK

ARRAYS IN PHP

47

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

The array_unique($data) function is used to remove all dupli-
cate entries in the array.

Example:
<?php
$data = array(15,15,19,21,33,19);
print_r(array_unique($data));
?>

The output of this program is:
Array
(
[0] => 15
[3] => 21
[19] => 33
[5] => 19
)
“ array_walk($arr, $func)

The array_walk($aar, $func) function is used while performing
custom processing on the various sections of an array. This func-
tion returns an altered array.

Example:

<?php
function reduce(&$a, $b) {
$a -= $a * 0.1;
}

$ourarray = array(10,20,30,40);
array_walk($ourarray, ‘reduce’);
print_r($ourarray);
?>

The output of this program is:
Array ([0] => 9 [1] => 18 [2] => 27 [3] => 36)

www.thinkdigit.com

3.6 Serializing arrays
The serialize() function is used to generate a representation of val-
ues that the array holds. This means that it is used to serialise
some PHP values. It stores the PHP values without loosing its type
and structure. These serialised values can be un-serialised by using
the unserialize() function. The serialize() function can not serialise
the variables of type ‘Resource’.

Example 1:
<?php
// $session_data contains a multi-dimensional

array with session
// information for the current user. We use seri-

alize() to store
// it in a database at the end of the request.

$con = odbc_connect(“webdb”, “php”, “bird”);
$a = odbc_prepare($con,

“UPDATE sessions SET data = ? WHERE id =
?”);

$sqldata = array (serialize($session_data),
$_SERVER[‘PHP_AUTH_USER’]);

if (!odbc_execute($a, &$sqldata)) {
$a = odbc_prepare($con,
“INSERT INTO sessions (id, data) VALUES(?,

?)”);
if (!odbc_execute($a, &$sqldata)) {

/* Something went wrong.. */
}

}
?>

Example:
<?php
if($_POST[submit]) {
$ourarray = array(); // New, blank array.
foreach($_POST as $key => $a) {
if($key!=”submit”) { // We want to exclude the

submit button
$ourarray[$key] = $a;
}

III

48

PHP

FAST TRACK

ARRAYS IN PHP

}
$ourarray = serialize($ourarray); // Serializes

our new array.
$b = fopen(“owndata.txt”,”r+”);
$write = fwrite($b,$newarray);
if($write) { // If it works, which it will...
echo “It worked!”;
}
else { // In the unlikely event of the plane

crashing...
}
}
?>
<?php
?>
<input type=”submit” id=”submit” name=”submit”

value=”Update” />
</form>

The output of this program is as follows:
Bottom of Form
Example (unserialize() function):

<?php
// Here, we use unserialize() to load session

data to the
// $session_data array from the string selected

from a database.
// This example complements the one described

with serialize().

$con = odbc_connect(“webdb”, “php”, “bird”);
$a = odbc_prepare($conn, “SELECT data FROM ses-

sions WHERE id = ?”);
$sqldata = array($_SERVER[‘PHP_AUTH_USER’]);
if (!odbc_execute($a, &$sqldata) ||

!odbc_fetch_into($a, &$tmp)) {
// if the execute or fetch fails, initialize

to empty array
$session_data = array();

} else {

49

PHP

www.thinkdigit.com FAST TRACK

IIIARRAYS IN PHP

www.thinkdigit.com

// we should now have the serialized data in
$tmp[0].

$session_data = unserialize($tmp[0]);
if (!is_array($session_data)) {

// something went wrong, initialize to
empty array

$session_data = array();
}

}
?>

III

50

PHP

FAST TRACK

ARRAYS IN PHP

4. Functions in PHP

In all programming and scripting languages, a function is a block
of code that is used repetitively in a program. It saves time while
developing a web page. In PHP, the concept of function is the same
as in other languages. There are some in-built functions in PHP.
Besides that, we can define functions as per our requirements.
These are called ‘User Defined Functions’.

Look at the elements of a function:
function: all function declarations begin with the word ‘function’.

Name of the function: names to a function are usually assigned in
accordance with its utility.

Opening and Closing parentheses (()): the opening and closing
parentheses are an integral part of a function and you can insert
both the opening and closing parentheses together, just after the
name of the function. As the dollar sign ($) indicates the existence
of a variable, these parentheses indicate the existence of a function.

Opening and Closing curly braces ({}): the opening curly brace ({)
indicates the beginning of the function code and the closing curly
brace marks the termination of a function.

Example:
<html>
<body>
<?php
function DisplayTitle()
{
echo “Learning Function”;
}
DisplayTitle();
?>
</body>
</html>

51www.thinkdigit.com FAST TRACK

Functions in PHP

www.thinkdigit.com

In this example, PHP codes are embedded in HTML. Here, we
have used a function ‘DisplayTitle()’. This function starts with the
word function and indicates that the character inserted just after
this word is a function. It displays the title of the tutorial. Any one
who will go through this will understand the purpose of this func-
tion from its name.

Look at a more complex example:
Example:
<?php
$makingfoo = true;
/* Here we should note that we can’t call foo()

from here
as it doesn’t exist yet,
but we can call bar() */
bar();
if ($makingfoo) {
function foo ()
{
echo “This does not exist unless and until the

program execution reaches here.\n”;
}
}
/* Here we can safely call foo()
since $makingfoo calculated to true */
if ($makingfoo) foo();
function bar()
{
echo “This does exist immediately upon the start-

ing of the program.\n”;
}
?>

4.1 User defined function

Let’s see how a user can define a function according to his/her
need. Look at the syntax of the user defined function:
function function_name(){

//statements are inserted here
}

IV

52

PHP

FAST TRACK

FUNCTIONS IN PHP

Here you can see that the naming convention is the same as
that of a variable. The only difference is that we do not use the
dollar sign ($). Also, a space is not used while naming the func-
tion. If a space is inserted between the two words (as ‘function
function), then these are interpreted as two different words and
returns an error message. You can use an underscore (_) instead
of the space between the two words. Assume you want to create
a function that randomly produces a password. Let this function
be randompassword(). A function cannot be completed without
the use of opening and closing parentheses () and the opening
and closing braces {}.

Example:
<?
function randompassword()
$characters = “abcdefghijklmnopqrstu-

vwxyz123456789”;
$password = ‘’;
for($i=0;$i<7;$i++)
{
$password .= $characters{rand() % 40};
}
return $password;
}
//this is to use the function
$password = randompassword();
?>

Here, this function creates a random password that includes
both letters and numbers. Letters and passwords are inserted in
the $characters variable. The randompassword() function is used
here for making the password random. The $password variable
returns a specific result. At last, the ‘$password=randompass-
word()’ function is used to run it.

53

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

www.thinkdigit.com

4.2 Function scope
The origin from where a function can be accessed is called the
function scope. A function, once declared, can be accessed from
any section of a program. A variable scope will be local to a func-
tion, if defined within a function. Use the global key word while
using a variable defined in the body part of the program.

Example:
function MathSum ()
{

global $sum = 4 + 4;
}

$sum = 0
MathSum ()
print “4 + 4 = “.$sum
Here, the global keyword instructs PHP to look for a variable

defined outside the function.

4.3 Function arguments and return values

In PHP, the codes are passed by both objects and arrays. We have
two models to pass data in a program: ‘Pass by value’ and ‘Pass by
reference’.

Pass by value: This indicates passing the variables. Here the vari-
ables are sent as an argument to a defined function. The assign-
ment operator is used to assign it to a different variable. The
receiving function or the variable gets a copy of the value of the
variable. Look at the codes below:

$x=5;
$y=$x;
Here, both the variables are assigned the value 5. You can

change either of these two variables, but the other one will not be
affected. The modification that we insert here, are completely
local to the function it belongs to. These changes are not reflected
outside the function.

Example:
<html>
<head>
<title>Passing an Argument tutorial</title>
</head>
<body>

IV

54

PHP

FAST TRACK

FUNCTIONS IN PHP

<?php
function addFour($num) {
$num += 4;
}
$originalnum = 40;
addFour($originalnum);
print($originalnum);
?>
</body>
</html>

The output of this program is as follows:
40

Pass by Reference:
‘Pass by Reference’ is a unique feature of OOPs (Object Oriented
Programming languages). It creates a new indicator but indicates
to the same variable. As the ‘Pass by Value’ creates a copy of a vari-
able, the ‘Pass by Reference’ creates a different name of the same
variable. The ampersand sign (&) is used while passing by refer-
ence. It is always inserted just after an assignment operator. Look
at the code below:

$x =& $y;

Here, the ampersand operator is used to create a reference to
the variable $y. Look how this code is executed:

$x = (& $y);

In order to define arguments to pass to a function, we need to
insert a list of names. These names must be inserted within paren-
theses in the statements of the function. Look at the code below:

function Passfunction ($argument1, $argument2)

Returning results from a function
In PHP, a function returns a specific result when a code is called.
Here the ‘return’ keyword is used. Look at the following syntax:

return $abc;

While processing a return statement, the function is termi-
nated. Here the value of the variable $abc is returned to a code
that is called. The values must be specified in the variable. Using

55

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

www.thinkdigit.com

one return statement, a single variable can be returned. We must
define an array in case of returning more than one variable. Look
at the example below:

Example:
<html>
<head>
<title>Returning Result from a Function </title>
</head>
<body>
<h1>Display capacity</h1>

<?php
function CalCapacity ($a, $b, $c)
{
$capacity = $a * $b * $c;
return $capacity;
}
$length = 4;
$width = 5;
$hight = 6;
print “The capacity of this object is “ .

CalCapacity($length, $width, $hight) . “ capacity
units.”;

?>
</body>
</html>

In the above example, a number of variables are passed to a
function as an argument. Here a result is returned. We are now
defining a function ‘CalCapacity’. It receives parameters like $a, $b
and $c. The function CalCapacity($a,$b,$c) will calculate and deter-
mine the capacity of an object. The function will return the result
in the code that is called. The variables $length, $width and $height
include three values. The print statement will show the result.

Look at another example for better understanding:
<?php
function mySum($numA, $numB) {
$total = $numA + $numB;
return $total;
}

IV

56

PHP

FAST TRACK

FUNCTIONS IN PHP

$numericValue = 0;
echo “First numericValue = “. $numericValue .”
”;
$numericValue = mySum(3, 4); // Here it Stores

the result of mySum in $numericValue
echo “Second numericValue = “ . $numericValue

.”
”;
?>
The output of this program is:
First numericValue = 0
Second numericValue = 7

4.4 Internal function

To ease the development process, PHP provides a large number of
in-built functions with some specific extensions. A few of these
functions are described in the other sections. Here are some of
these Internal Functions:

“ imagecreatetruecolor()
The ‘imagecreatetruecolor()’ function returns an image identi-

fier that represents a black image of the specified size. Look at the
syntax of this function:

width
Image width
height
Image height

It returns an image resource identifier if it is successfully exe-
cuted. The ‘FALSE’ value is returned if an error occurs.

Example:
<?php
header (“Content-type: image/png”);
$im = @imagecreatetruecolor(120, 20)

or die(“Cannot Initialize new GD image
stream”);

$text_color = imagecolorallocate($im, 233,
14,91);

imagestring($im, 1, 5, 5, “A Simple Text
String”, $text_color);

imagepng($im);

57

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

www.thinkdigit.com

imagedestroy($im);
?>
“ mysql_connect()

The ‘mysql_connect()’ function is used to connect to a MySQL
Database Server. It returns a MySQL link identifier if it is success-
fully executed. A ‘FALSE’ value is returned if an error occurs while
executing the program.

Look at the examples below:
Example 1:
<?php
$con = mysql_connect(‘localhost’,’mysql_user’,

‘mysql_password’);
if (!$con) {

die(‘Could not connect: ‘ . mysql_error());
}
echo ‘Connected successfully’;
mysql_close($con);
?>
Example 2:
<?php
// we connect to oursite.com and port 3307
$con = mysql_connect(‘

oursite.com:3307’,’mysql_user’, ‘mysql_password’);
if (!$con) {

die(‘Could not connect: ‘ . mysql_error());
}
echo ‘Connected successfully’;
mysql_close($con);

// we connect to localhost at port 3307
$con =

mysql_connect(‘122.0.0.1:1107’,’mysql_user’,
‘mysql_password’);

if (!$con) {
die(‘Could not connect: ‘ . mysql_error());

}
echo ‘Connected successfully’;
mysql_close($con);
?>
Example 3:

IV

58

PHP

FAST TRACK

FUNCTIONS IN PHP

<?php

// we connect to localhost and socket e.g.
/tmp/mysql.sock

//variant 1: ommit localhost

$con = mysql_connect(‘:/tmp/mysql’,’mysql_user’,
‘mysql_password’);

if (!$con) {
die(‘Could not connect: ‘ . mysql_error());

}
echo ‘Connected successfully’;
mysql_close($con);

// variant 2: with localhost
$ c o n

=mysql_connect(‘localhost:/tmp/mysql.sock’,’mysql_u
ser’, ‘mysql_password’);

if (!$con) {
die(‘Could not connect: ‘ . mysql_error());

}
echo ‘Connected successfully’;
mysql_close($con);
?>
“ phpinfo()

The phinfo() function is extremely helpful for new users. We
can get a lot of information on PHP by using this function. We can
get the information on the current state of PHP as the output. It
returns’ TRUE’ if the function is executed successfully. It returns
‘FALSE’ if an error occurs while the execution of the program.

Function Value Description of the Function
INFO_GENERAL 1 This function configures line, and

php.ini location. It also builds date,
Web Server, System and many more.

INFO_CREDITS 2 This function displays the credits of
PHP 4.

INFO_CONFIGURATION 4 This function defines the Current,

59

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

www.thinkdigit.com

Local and Master values for php
directives.

INFO_MODULES 8 This function loads modules as well
as their respective settings.

INFO_ENVIRONMENT 16 This function defines the
Environment Variable information.
These information are also available
in $_ENV.

INFO_VARIABLES 32 This function displays all the prede-
fined variables from EGPCS
(Environment, GET, POST, Cookie and
Server).

INFO_LICENSE 64 This function displays the PHP
License information.

INFO_ALL -1 This function displays all of the above
characteristics. It is also regarded as
the default value of PHP.

Look at the example below:
Example:
<?php

// Show all information, defaults to INFO_ALL
phpinfo();

// Show just the module information.
// phpinfo(8) yields identical results.
phpinfo(INFO_MODULES);

?>
“ get_loaded_extensions()

The ‘get_loaded_extensions()’ function returns an array that
includes the names of all modules. These modules are compiled
and loaded in the interpreter of PHP.

Look at the example below:
Example:
<?php
print_r(get_loaded_extensions());
?>

IV

60

PHP

FAST TRACK

FUNCTIONS IN PHP

The output of this program is as follows:
Array ([0] => bcmath [1] => calendar [2] => com_dot-
net [3] => ctype [4] => ftp [5] => iconv [6] => odbc
[7] => pcre [8] => session [9] => SPL [10] => SQLite
[11] => standard [12] => tokenizer [13] => zlib [14]
=> libxml [15] => dom [16] => SimpleXML [17] => wddx
[18] => xml [19] => apache [20] => mbstring [21] =>
mysql [22] => mysqli)

“ str_replace()

The ‘str_replace()’ function removes all the events of the search
string and inserts the replacement values.

Example:
<?php
// Provides: <body text=’black’>
$newbody = str_replace(“%body%”, “black”,”<body

text=’%body%’>”);
// Provides: Hll Wrld f PHP
$allvowels = array(“a”, “e”, “i”, “o”, “u”,

“A”,”E”, “I”, “O”, “U”);
$onlyconsonants = str_replace($allvowels,

“”,”Hello World of PHP”);
// Provides: You should eat pizza, beer, and ice

cream every day
$food_msg = “You should eat fruits, vegetables,

and fiber every day.”;
$healthy_food = array(“fruits”,

“vegetables”,”fiber”);
$testy = array(“pizza”, “beer”, “ice cream”);
$newphrase = str_replace($healthy_food,

$testy,$food_msg);
// Use of the count parameter is available as of

PHP 5.0.0
$str_replaced = str_replace(“ll”, “”, “good golly

miss molly!”, $count);
echo $count; // 2
// Order of replacement
$str_replaced = “Line 1\nLine 2\rLine 3\r\nLine

4\n”;
$order = array(“\r\n”, “\n”, “\r”);
$replace = ‘
’;

61

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

www.thinkdigit.com

// Processes \r\n’s first so they aren’t con-
verted twice.

$newstr = str_replace($order, $replace,
$str_replaced);

// Outputs: apearpearle pear
$letters = array(‘e’, ‘p’);
$fruit = array(‘apple’, ‘pear’);
$text = ‘e p’;
$output = str_replace($letters, $fruit, $text);
echo $output;
?>
“ get_extension_funcs()
The ‘get_extension_funcs()’ function returns an

array with the names of the functions that are
defined in the module.

Look at the example below:
Example:
<?php
print_r(get_extension_funcs(“xml”));
?>

The output of the above example is something like the following:
Array
(
[0] => xml_parser_create
[1] => xml_parser_create_ns
[2] => xml_set_object
[3] => xml_set_element_handler
[4] => xml_set_character_data_handler
[5] => xml_set_processing_instruction_handler
[6] => xml_set_default_handler
[7] => xml_set_unparsed_entity_decl_handler
[8] => xml_set_notation_decl_handler
[9] => xml_set_external_entity_ref_handler
[10] => xml_set_start_namespace_decl_handler
[11] => xml_set_end_namespace_decl_handler
[12] => xml_parse
[13] => xml_parse_into_struct
[14] => xml_get_error_code
[15] => xml_error_string
[16] => xml_get_current_line_number

IV

62

PHP

FAST TRACK

FUNCTIONS IN PHP

[17] => xml_get_current_column_number
[18] => xml_get_current_byte_index
[19] => xml_parser_free
[20] => xml_parser_set_option
[21] => xml_parser_get_option
[22] => utf8_encode
[23] => utf8_decode
)
“ dl()

The ‘dl()’ function loads an extension of PHP at runtime. If it is
successfully executed, then it returns the Boolean value TRUE. If
there is a problem during the execution of the program, it returns
FALSE.

Example:
<?php
// Example loading an extension based on OS
if (!extension_loaded(‘sqlite’)) {

if (strtoupper(substr(PHP_OS, 0, 3)) ===’WIN’)
{

dl(‘php_sqlite.dll’);
} else {

dl(‘sqlite.so’);
}

}

// Or, the PHP_SHLIB_SUFFIX constant is available
as of PHP 4.3.0

if (!extension_loaded(‘sqlite’)) {
$prefix = (PHP_SHLIB_SUFFIX === ‘dll’) ?’php_’

: ‘’;
dl($prefix . ‘sqlite.’ . PHP_SHLIB_SUFFIX);

}
?>

63

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

www.thinkdigit.com

4.5 Static variables
PHP provides some Static variables which exist only in a local func-
tion scope. The Static variables do not loose their value in case the
function (where they are declared) execution is terminated and is
recalled later. Static variables can be used for working with recur-
sive functions, where a function calls itself.

Example 1:

<?php
$abc = 9;
function fruit () {
static $abc = 0;
$fruit_arr =

array(“mango”,”apple”,”guava”,”bananna”);
$abc++;
$abc %= count($fruit_arr);
return $fruit_arr[$abc];
}
for ($j=0; $j<10; $j++) {
print “What’s for dinner - “.fruit().”?
”;
}
print $abc; # Just to show you this is a differ-

ent abc!
?>

The output of this program is:
Which fruit you like - apple?
Which fruit you like - guava?
Which fruit you like - bananna?
Which fruit you like - mango?
Which fruit you like - apple?
Which fruit you like - guava?
Which fruit you like - bananna?
Which fruit you like - mango?
Which fruit you like - apple?
Which fruit you like - guava?
9

IV

64

PHP

FAST TRACK

FUNCTIONS IN PHP

65

PHP

www.thinkdigit.com FAST TRACK

IVFUNCTIONS IN PHP

Example 2:
<?php
function &quick_ref() {
static $static_obj;
echo “We are using Static object: “;
var_dump($static_obj);
if (!isset($static_obj)) {
// Assign a reference to the static variable
$static_obj = &new stdClass;
}
$static_obj->property++;
return $static_obj;
}
function &quick_noref() {
static $static_obj;
echo “ We are using Static object: “;
var_dump($static_obj);
if (!isset($static_obj)) {
// Assign the object to the static variable
$static_obj = new stdClass;
}
$static_obj->property++;
return $static_obj;
}
$static_obj1 = quick_ref();
$still_static_obj1 = quick_ref();
echo “\n”;
$static_obj2 = quick_noref();
$still_static_obj2 = quick_noref();
?>

The output of this program is as follows:
We are using Static object: NULL
We are using Static object: NULL
We are using Static object: NULL
We are using Static object: object(stdClass)#3
(1) { [“property”]=> int(1) }

FAST TRACK www.thinkdigit.com

V

66

PHP
STRINGS IN PHP

5.1 Introduction to string

We have already discussed the basics of strings in PHP. Here we
will look at some of the advanced features of strings.

We can use the concatenation operator (.) to concatenate two
strings. Look at the example below:

Example:
<?php
$text1 = “Welcome”;
$text2 = “abcd”;
echo $text1 . “ “ . $text2;
?>

The output of this program is as follows:
Welcome abcd

Here, we have used the concatenation operator twice to insert
another (third) string. We have inserted a string that includes a
single character just between the two string variables. Here, we
have used an empty space to separate the two variables.

Variables are parsed within the strings if it is inserted within
double quotation marks or in the Heredoc strings. Here we have
two types of syntax:

Simple: The simple syntax is most commonly used in PHP. We can-
not parse an array value or an object property in a variable by
using this syntax.

Complex: PHP4 has introduced complex syntax. It is always insert-
ed within curly braces.

Simple:
When the PHP engine executes a dollar sign($), then the parser
will receive a number token to develop a valid variable name. That
is why we need to insert the names of the variables in curly braces

Strings in PHP

to mark the end of the variable.
Example:
<?php
$fruit = ‘mango’;
echo “$fruit ‘s taste is good
”;
echo “He eat some $fruits
”;
echo “He eat some ${fruit}s
”;
echo “He eat some {$fruit}s
”;
?>

The output of the above program is:
mango’s taste is good
He eat some
He eat some mangos
He eat some mangos

In the above example, a variable $fruit is assigned with a string
‘mango’. Then its value is displayed using different methods. In
the first statement, “ ‘ “ is an invalid character for a variable.
Therefore, it is treated as a symbol (‘). In the second statement, “s”
is a valid name, so ‘$fruits’ is treated as a variable where no value
is assigned. The other two statements show how variable names
can be enclosed within braces.

In the same way, you can insert an array index as well as an
object property that is to be parsed. The square bracket indicates
the closing of the index.

You can declare an array as:
$shirt = array(‘tshirt’ => ‘white’, ‘bushshirt’

=> ‘black’);

Then the statements given below will execute properly:
echo “Tshirt is $shirt[tshirt].”;
echo “Tshirt is $shirt[tshirt].”;
echo “Tshirt is {$shirt[‘tshirt’]}.”;
echo “Tshirt is “ . $shirt[‘tshirt’] . “.”;

All the statements mentioned above will give the same output:
Tshirt is white.

67

PHP

www.thinkdigit.com FAST TRACK

VSTRINGS IN PHP

www.thinkdigit.com

However, the statement
echo “Tshirt is $shirt[‘tshirt’].”;
will produce a parse error.

Complex:
In the complex syntax, you can insert complex expressions. Any
value from the namespace in strings can be inserted here. The
expression can follow the same format used for inserting it out-
side the string. Here, insert a curly brace.

Example:
<?php
$name = ‘John’;
echo “He is { $name}
”;
echo “He is {$name}
”;
echo “He is ${name}
”;
?>

The output of the above program is as follows:
He is {John}
He is John
He is John

In the first statement, there is a blank space between ({) and
($), so the braces ({ }) are treated as characters. In the other two
statements, the curly braces ({ }) are correctly used.

Object property and array elements can also be accessed using
this method.

Example 01:
<?php
class fruit
{
var $name=”mango”;
}
$fr1=new fruit();
echo “This is {$fr1->name}.”;
?>
The output of the above program is as follows:
This is mango.
Example 02:
<?php

V

68

PHP

FAST TRACK

STRINGS IN PHP

$arr=array(1,2,3,4,5);
echo “The third element is {$arr[3]}.”;
?>

The output of the above program is as follows:
The third element is 4.

You can easily access the characters that are inserted within
the strings. Here, mention the zero based offset of the expected
character just after the string in curly braces.

Example:
<?php
$str = “This is string”;
$a = $str{0};
$b = $str{2};
$c = “This is also a string”;
$d = $str{strlen($str)-1};
echo $a.”
”;
echo $b.”
”;
echo $c.”
”;
echo $d.”
”;
?>

The output of the above program is as follows:
T
i
This is also a string
g

You can convert a value to a string by using a string cast. Here,
the strayal() function can also be used. The echo() and the
print() functions are used to automatically convert a string in
the scope of an expression, if a string is needed here. This can also
be done while comparing a string to a variable. A PHP engine con-
verts a ‘TRUE’ value to the ‘1’ string while the ‘FALSE’ value is
converted to an empty string. Similarly, you can also convert an
integer or a float to a string. The exponential notation is used to
convert a floating point number.

Example:
<?php
$foo = 1 + “10.5”; // $foo is

69

PHP

www.thinkdigit.com FAST TRACK

VSTRINGS IN PHP

www.thinkdigit.com

float (11.5)
$foo = 1 + “-1.3e3”; // $foo is

float (-1299)
$foo = 1 + “bob-1.3e3”; // $foo is

integer (1)
$foo = 1 + “bob3”; // $foo is

integer (1)
$foo = 1 + “10 Small Pigs”; // $foo is inte-

ger (11)
$foo = 4 + “10.2 Little Piggies”; // $foo is float

(14.2)
$foo = “10.0 pigs “ + 1; // $foo is

float (11)
$foo = “10.0 pigs “ + 1.0; // $foo is float

(11)
?>

5.2 String functions

PHP provides us various in built string functions.
“ addcslashes()
The addcslashes() function returns a string with backslashes in

front of the specified characters. This function was introduced in
PHP4. Look at the example below:

Example:
<?php
echo addcslashes(‘abcd[]’, ‘A..z’);
?>

The output of the above program will be:
\a\b\c\d\[\]

addslashes()
The addslashes() function returns a string with backslashes in
front of the characters that are defined previously. These charac-
ters are single quote (‘), double quote (“), backslash (\) and NUL
(the NULL byte). This function was introduced in PHP3. Look at the
example below:

Example:
<?php

V

70

PHP

FAST TRACK

STRINGS IN PHP

$hello=”Are you Jack’s brother?”;
echo addslashes($hello);
?>
The output of the above program is:
Are you Jack\’s brother?

bin2hex()
The bin2hex() function converts a string of ASCII characters to
hexadecimal values. This was introduced in PHP3.

chop()
The chop() function is the pseudonym of rtrim(). This function was
introduced in PHP3. Look at the example:

Example:
<?php
$text = “\t\t We are using chop :) ... “;
$choped = chop($text);
echo $choped.”
”;
$choped = chop($text,” \t.”);
echo $choped.”
”;
?>

The output of the above program is as follows:
We are using chop :) ...
We are using chop :)

chr()
The chr() function returns a single character string from an
ASCII value that is already specified. This function was introduced
in PHP3. Look at the example below:

Example:
<?php
$string .= chr(27); /* include an escape charac-

ter at the end of $string */
/* This will often help */
$string = sprintf(“The defined string will end in

escape: %c”, 27);
?>

chunk_split()
The chunk_split() function divides a string into a sequence of

71

PHP

www.thinkdigit.com FAST TRACK

VSTRINGS IN PHP

www.thinkdigit.com

small fragments. This function was introduced in PHP3.
Example:
<?php
// formatting $info by using the RFC 2045 seman-

tics
$new_strng = chunk_split(base64_encode($info));
?>

convert_cyr_string()
The convert_cyr_string() function is used to convert a string
from one Cyrillic character-set to another set. It was introduced in
PHP3. Look at the types that are supported by this function:

“ k - koi8-r
“ w - windows-1251
“ i - iso8859-5
“ a - x-cp866
“ d - x-cp866
“ m - x-mac-cyrillic

str_ireplace()
The str_ireplace() function is used to replace some case insen-
sitive characters in a string. This function was introduced in PHP5.
Look at the example below:

Example:
<?php
$bdtag = str_ireplace(“%bd%”, “blue”, “<body

text=%BD%>”);
?>

str_repeat()
The str_repeat() function is used to repeat a string, a specified
number of times. This function was introduced in PHP4. Look at
the example below:

Example:
<?php
echo str_repeat(“*-”, 8);
?>
The output of the above program is as follows:
--*-*-*-*-*-*-

V

72

PHP

FAST TRACK

STRINGS IN PHP

str_replace()
The str_replace() function is used to replace some case sensi-
tive characters in a string. This function was introduced in PHP3.

Example:
<?php
$replace = array(“a”, “e”);
$aft_replace = str_replace($replace, “i”, “We are

learning php”);
echo $aft_replace.”
”;
$team = “Sourav, Rahul,Anil all are great crick-

eters.”;
echo $team.”
”;
$present = array(“Sourav”, “Rahul”,”Anil”);
$future = array(“Dhoni”, “Rohit”, “Sehbag”);
$newteam = str_replace($present, $future,

$team,$num);
echo $newteam.”
”;
echo “there are {$num} change in team”;
?>

The output of the above program is as follows:
Wi iri liirning php
Sourav, Rahul, Anil all are great cricketers.
Dhoni, Rohit, Sehwag all are great cricketers.
there are 3 change in team

str_split()
The str_split() function is used to split a string into an array.
This function was introduced in PHP5. Look at the example below:

Example:
<?php
$text = “How are you”;
$split1 = str_split($text);
$split2 = str_split($text, 3);
print_r($split1);
print_r($split2);
?>

The output of the above program is as follows:
Array
(

73

PHP

www.thinkdigit.com FAST TRACK

VSTRINGS IN PHP

www.thinkdigit.com

[0] => H
[1] => o
[2] => w
[3] =>
[4] => a
[5] => r
[6] => e
[7] =>
[8] => y
[9] => o
[10] => u
)
Array
(
[0] => How
[1] => ar
[2] => e y
[3] => ou
)

str_word_count()
The str_word_count() function is used to count the number of
words in a string. This function was introduced in PHP4. Look at
the example below:

Example:
<?php
$text = “Good morning friends! have nice day”;
$a=str_word_count($text,1);
$b=str_word_count($text,2);
$c=str_word_count($text);
print_r($a);
print_r($b);
print $c;
?>
The output of the above program is as follows:
Array
(
[0] => Good
[1] => morning
[2] => friends
[3] => have

V

74

PHP

FAST TRACK

STRINGS IN PHP

[4] => nice
[5] => day
)
Array
(
[0] => Good
[5] => morning
[13] => friends
[22] => have
[27] => nice
[32] => day
)
6

strcasecmp()
The strcasecmp() function is used to compare two case sensitive
strings. This function was introduced in PHP3. Look at the exam-
ple below:

Example:
<?php
$text1 = “Good morning”;
$text2 = “Good morning”;
if (strcasecmp($text1, $text2) == 0) {
echo ‘$text1 is equal to $text2 in a case-insen-

sitive string comparison’;
}
?>

The output of the above program is as follows:
$text1 is equal to $text2 in a case-insensitive

string comparison

strchr()
The strchr() function is used to find the first appearance of a string
inside another string. It is the pseudonym of the strstr() func-
tion. This function was introduced in PHP3.

strcmp()
The strcmp() function is used to compare two case sensitive
strings. This function was introduced in PHP3.

75

PHP

www.thinkdigit.com FAST TRACK

VSTRINGS IN PHP

www.thinkdigit.com

stripcslashes()
The stripcslashes() function is used to unquote a string that
is quoted by using the addcslashes() function. This function was
introduced in PHP4.

stripslashes()
The stripslashes() function is used to unquote a string that is
quoted by using the addslashes() function. This function was intro-
duced in PHP3. Look at the following example:

Example:
<?php
$str = “Are you Jack?”;
// Outputs: Are you Jack?
echo stripslashes($str);
?>

strlen()
The strlen() function is used to return the length of a specific
string. This function was introduced in PHP3.

Example:
<?php
$text = ‘aeiou’;
echo strlen($text).”
”;
$str = ‘ ab cd ‘;
echo strlen($str);
?>
The output of the above program is:
5
7

strncasecmp()
The strncasecmp() function is used to compare a case sensitive
string of the first ‘n’ character. This function was introduced in
PHP4.

substr()
The substr() function is used to return a part of a string. This
function was introduced in PHP3.

substr_compare()
The substr_compare() function is used to compare two strings

V

76

PHP

FAST TRACK

STRINGS IN PHP

from a specific starting position. This function was introduced in
PHP5.

substr_count()
The substr_count() function is used to count the number of
times a substring appears in a string. This function was intro-
duced in PHP4.

Example:
<?php
print substr_count(“Hello how are you and what

are you doing now?”, “are”);
?>
Output:
2

substr_replace()
The substr_replace() function is used to replace a part of a
string with another string of the program. This function was intro-
duced in PHP4.

Example:
<?php
$str = ‘INDIA:/DELHI/’;
echo “Before using function: $str<hr>\n”;
echo substr_replace($str, ‘KOLKATA’, 0) .

“
\n”;
echo substr_replace($str, ‘MUMBAI’, 0,

strlen($str)) . “
\n”;
echo substr_replace($str, ‘BANGALURU’, 0, 0) .

“
\n”;
echo substr_replace($str, ‘HYDRABAD’, 6, -1) .

“
\n”;
echo substr_replace($str, ‘CHENNI’, -7, -1) .

“
\n”;
echo substr_replace($str, ‘’, 13, -1) . “
\n”;
?>
The output of the above program is as follows:
Before using function: INDIA:/DELHI/

KOLKATA
MUMBAI
BANGALURUINDIA:/DELHI/

77

PHP

www.thinkdigit.com FAST TRACK

VSTRINGS IN PHP

www.thinkdigit.com

INDIA:HYDRABAD/
INDIA:CHENNI/
INDIA:/DELHI/

trim()
The trim() function is used to remove the white spaces from both
sides of a string. This function was introduced in PHP3.

Example:
<?php
$text = “\t\t We are using trim :) ... “;
$trimed = trim($text);
echo $trimed.”
”;
$trimed = trim($text,” \t.”);
echo $trimed.”
”;
?>
The output of the above program is as follows:
We are using trim :) ...
We are using trim :)

V

78

PHP

FAST TRACK

STRINGS IN PHP

79

PHP

www.thinkdigit.com FAST TRACK

VIOBJECT ORIENTATION
IN PHP

6.1 Getting started
We will now go through the basic concepts of the Object Oriented
Programming (OOP). Here, variables and methods are grouped
together to form a class. These classes are instantiated by creating
objects. The members of a class are accessed through the object of
a class.

6.2 Class and object

A class implements the concept of ADT (Abstract Data Type). It is a
compilation of methods and objects. A class definition always
begins with the keyword ‘class’, followed by an identifier that rep-
resents the name of the class. These are followed by a pair of curly
braces ({ }) that contains the members of the class. In the follow-
ing example, we have defined a class Wonderbox.

Example:
<?php
class Wonderbox
{
var $val;
function getvalue()
{
$this->val=10;
}
function showvalue()
{
echo “You have entered “.$this->val;
}
}
$ourobj = new Wonderbox();
$ourobj->getvalue();

Object Orientation in
PHP

www.thinkdigit.com

$ourobj->showvalue();
?>

The output of the above program is as follows:
You have entered 10
value is changed to 20

This is the basic structure on which we have constructed our
Wonderbox class. It includes the variable ‘$val’ and the two fol-
lowing functions: ‘getvalue()’ and ‘showvalue()’. The keyword ‘var’
is used to declare a variable within a class. By nature this type of
variables are public and can be accessed by the methods of the
class. They can also be accessed outside a class as shown in the
above example. You can also use the keyword ‘public’ instead of
‘var’. ‘$this’ is a pseudo variable and ‘->’ is an operator. Using this
combination, you can access any member (property or value) with-
in the class itself.

A class is a template. To use this template an object must be
instantiated. The keyword ‘new’ is used to instantiate an object. In
the above example, $ourobj represents an object of the class
Wonderbox. You can access the members of the class using the
object and the ‘->’ operator. Any member declared with the key-
word “private” or “protected” cannot be accessed outside the
method of the class.

Example:
<?php
class ourclass
{
private $val;
function getvalue()
{
$this->val=10;
}
function showvalue()
{
echo “within method value is “.$this->val;
}
}
$ourobj=new ourclass();
$ourobj->getvalue();

VI

80

PHP

FAST TRACK

OBJECT ORIENTATION
IN PHP

FAST TRACK

$ourobj->showvalue();
$ourobj->val=20;
echo “
value outside the method “.$ourobj-

>val;
?>

The above example will display an error message, since any pri-
vate data member cannot be accessed outside the method of the class.

6.3 Classes as namespaces

The ‘Namespace’ solves the problem of scoping in the huge PHP
library. Class definitions are global in PHP. It helps to manage
naming scope without using a long name, while referring to a
class. It solves the problem of sharing a global space as well. We
can avoid making the codes unreadable. While declaring a name-
space, the keyword ‘namespace’ is used at the beginning of the
file. A single namespace can be used for more than one file. The
namespace includes class, constants and function definitions. It
never includes free codes. See the following example:

Example:
<?php

namespace ourNameSpace::DB;

const CONNECTION = 1;

class Connection { /* ... */ }

function connect() { /* ... */ }

?>
All classes, functions and constant names remain automatical-

ly prefixed inside the namespace. The namespace name and con-
stant name together develop the constants. The namespace con-
stants always include static values.

In the absence of a namespace definition, insert the class and
the function definition into the global space. To specify a global
space, insert the double colon sign (::) into the name of the
namespace.

81

PHP

www.thinkdigit.com FAST TRACK

VIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

Example:
<?php

namespace X::Y::Z;

/* This is the function X::Y::Z::fopen */
function fopen() {

/* ... */
$ab = ::fopen(...); // calling global

fopen
return $ab;

}
?>

The constant named ‘__NAMESPACE__’ holds the value of the
current namespace as a string. In the Global Scope or inside the
Code without a namespace, the value of the Constant ‘__NAME-
SPACE__’ is an empty String. While composing a full name for
local namespace, we use this constant. See the example below:

Example:
<?php
namespace X::Y::Z;

function foo() {
// doing stuff
}

set_error_handler(__NAMESPACE__ . “::foo”);
?>

6.4 Objects as References

‘Reference’ is an exclusive feature of PHP. Using ‘Reference’ we can
have multiple names for the same Variable.

Example:
<?php
$x = 10;
$y = & $x;
$x++;
echo ‘The value of $y is ‘ . $y;
?>

VI

82

PHP

FAST TRACK

OBJECT ORIENTATION
IN PHP

FAST TRACK

The output of the above program is as follows:
The value of $y is 11;

In the above example, the $x and the $y are the same variable
with two different names. Therefore, increasing the value of $x
also affects the value of the variable.

Let’s see how we can unset a reference:
While unsetting a reference, we need to separate the variable
name from the variable content. Here, the variable content will
not be ruined.

Example:
<?php
$x = 1;
$y =& $x;
unset ($x);
?>

Here, it will not unset the $y variable, rather it will remove the
association of the name $x from the variable. The variable named
$y still holds the same Variable and has the same content.

The example given below will show how an object can be
referred by other names.

Example:
<?php
class ourclass
{
private $val;
function getValue()
{
$this->val=10;
}
function showValue()
{

echo “within method value is “.$this->val;
}
}
$ourObj = new ourclass();
$refObj = & $ourObj;
$refObj->getValue();

83

PHP

www.thinkdigit.com FAST TRACK

VIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

$refObj->showValue();
?>

Here the object $ourObj will be referred as $refObj. We can
easily spot a reference here. There are various PHP constructs that
are executed by reference. Look at some of those constructs:

Global references:
When we declare a ‘global $var’ in a program, it indicates
that we are developing a reference to a ‘global variable’. See the
code below:

Example:
<?php
$var = 100;
$varRef = & $GLOBALS[‘var’];

echo “\nVar = “ . $var;
echo “\nVarRef = “ . $varRef;

unset($var);
echo “\nVar = “ . $var;
echo “\nVarRef = “ . $varRef;
?>

The output of the above program will be as follows:
If we unset the $var, then it does not unset the

global variable.
“ $this

Inside a class, the ‘$this’ variable always refers to the caller
objects. Basically, the ‘$this’ variable is used to specify a local vari-
able. It instructs PHP to point to the particular object with which
you are presently working. Look at the example below:

Example:
function buzzing() {
print “{$this->Name} says Woof!\n”;
}

VI

84

PHP

FAST TRACK

OBJECT ORIENTATION
IN PHP

FAST TRACK

6.5 Implementing inheritance
Inheritance is a concept by which members (property and method)
of one class can be used by another class.

Example:
<?php
class pclass
{
var $p_val;
function p_getval()
{
$this->p_val = “parent”;
}
function p_showval()
{
echo “We are in $this->p_val class method”;
}
}
class cclass extends pclass
{
var $c_val;
function c_getval()
{
$this->c_val = “child”;
}
function c_showval()
{
echo “We are in $this->c_val class method”;
}
}
$cobj = new cclass();
$cobj->p_getval();
$cobj->p_showval();
$cobj->c_getval();
echo “
”;
$cobj->c_showval();
?>

The output of the above program is as follows:
We are in parent class method
We are in child class method

85

PHP

www.thinkdigit.com FAST TRACK

VIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

In the above example, the ‘extends’ keyword is used to tell the
PHP parser that the cclass class inherits the pclass class. Here
pclass’ is called the parent class and ‘cclass’ is called the child or
the derived class. All the members of ‘pclass’ are now available in
‘cclass’. Therefore, the members of ‘pclass’ can be accessed by the
object of ‘cclass’ as shown in the above example. A new member
can also be created in the child class.

6.6 Method overriding

We can easily redefine functions of parent class in the derived
or child class. Look at the examples below:

Example 1:
<?php
class pclass
{
var $p_val = “parent”;
function showval()
{
echo “We are in $this->p_val class”;
}
}
class cclass extends pclass
{
var $c_val = “child”;
function showval()
{
echo “We are in $this->c_val class”;
}
}
$cobj = new cclass();
$cobj->showval();
?>

In the above example, we have redefined the function show-
val() inside the ‘cclass’. Now when you access the function
showval() using ‘cclass’ object, the definition of ‘cclass’ is
executed. If you want to use the definition of ‘pclass’, then you
have to create the object of ‘pclass’ or use the method that is
used in following example.

VI

86

PHP

FAST TRACK

OBJECT ORIENTATION
IN PHP

FAST TRACK

Example 02:
<?php
class pclass
{
var $p_val=”parent”;
function showval()
{
echo “We are in $this->p_val class”;
}
}
class cclass extends pclass
{
var $c_val=”child”;
function showval()
{
echo “We are in $this->c_val class”;
pclass::showval();
}
}
$cobj=new cclass();
$cobj->showval();
?>

6.7 Magic functions

Magic Functions are those with a double underscore sign (__). We
do not declare these functions and are reserved by PHP. Look at the
various ‘Magic Functions’:

“ __autoload()
“ __get()
“ __set()
“ __call()
“ __toString()
Now let’s go through them in detail:

__autoload()
The __autolad() function is a magic function which is called
when you try to create an instant of a class which has not been
declared. So we can implement our own version of this function to
try to include the file which declares the class before an error is
displayed. Look at the example below:

87

PHP

www.thinkdigit.com FAST TRACK

VIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

Example:
<?php
function __autoload($c_name) {
print “Bad class name: $c_name!\n”;
include “abcclass.php”;
}
$obj = new abc;
$obj->show();
?>

In the above example, we have tried to create an object of ‘abc’
class that is not defined previously. So the function __autoload() is
called automatically by the PHP Engine. Inside this, we have
included the File (abcclass.php) where the Class abc is defined.
This will create the object as per our need.

__get()
The __get() function is used to specify the action if an unknown
class variable is read from within the script.

Example:
<?php
class student{
var $Name;
var $roll;
// public $address;
public function __get($val) {
print “Attempted to retrieve $val and

failed...\n”;
}
}
$std1 = new student;
print $std1->address;
?>

In the above example, the student class includes the com-
mented declaration of the variable ‘$address’. Here, the __get()
function will be called to display the following output.

The output of the above program is as follows:
Attempted to retrieve address and failed...

VI

88

PHP

FAST TRACK

OBJECT ORIENTATION
IN PHP

FAST TRACK

__set()
The __set() magic function is used to complement the __get()
function. This function is called when you set an undefined class
variable in a program. Here we have given an example where we
have used the ‘__set()’ magic function to develop a database table
class. Assuming itself as the member of the class, it performs an
unplanned enquiry.

Example:
<?php
//...[snip - insert the MySQL connection code

here]...
class newtable {
public $Naming;
// public $AdministrativeEmail;
public function __construct($Naming)
{
$this->Naming = $Naming;
}
public function __set($var, $val) {
mysql_query(“UPDATE {$this->Naming} SET $var =

‘$val’;”);
}
// public $AdministrativeEmail = ‘foo@bar.com’;
}
$systemvars = new newtable(“systemvars”);
$systemvars->AdministrativeEmail = ‘telrev@some-

site.net’;
?>

In the above example, $AdministrativeEmail is commented
out. It is not available in the newtable class.
$AdministrativeEmail is set on the last line and __set() is
called here. It includes the name of the variable that is being set.

__call()
Another important magic function is the __call() function.
Example:

<?php
class Bee {
public $Naming;
public function buzz() {

89

PHP

www.thinkdigit.com FAST TRACK

VIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

print “Woof!\n”;
}
// public function meow() {
// print “Bees don’t meow!\n”;
// }
public function __call($function, $args) {
$args = implode(‘, ‘, $args);
print “Call to $function() with args ‘$args’

failed!\n”;
}
}
$honey = new Bee;
$honey->meow(“foo”, “bar”, “baz”);
?>

In the above example, the meow() function is commented out.
You can remove the comments from the meow() function by
ensuring that the __call() function is not used in case the func-
tion already exists.

__toString()
The __toString() magic function is used to set a string value
for an object. This function will only be used if this object is used
as a string. Look at the following example:

Example:
<?php
class dog {
public function __toString() {
return “This is a dog\n”;
}
}
$tommy = new dog;
print $tommy;
?>
The output of the above program is as follows:
This is a dog

Here the object $tommy is used as string with the help of
__toString() function.

VI

90

PHP

FAST TRACK

OBJECT ORIENTATION
IN PHP

FAST TRACK

91

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

One of the remarkable features of PHP is the handling of
HTML forms. All the form elements of an HTML page are
available in PHP. HTML forms on the World Wide Web are

important for transferring substantial standards of information
from the user to the server. In PHP, it is easy to acquire and work
with the information submitted by HTML forms.

7.1. Global and environmental variable:

Before making a form for acquiring data from the users, you need
to make a small diversion and check the global variables. Usually
global variables are declared in the initial part of a script and out-
side a function. The functions are available in a global associative
array. See the example below:

Example:
<html>
<head>
<title>Getting information from the $GLOBALS

array</title>
</head>
<body>
<?php
$student1 = “Sachin”;
$student2 = “Sourav”;
$student3 = “Rahul”;
foreach ($GLOBALS as $key => $value)
{
print “\$GLOBALS[\”$key\”] == $value
”;
}
?>
</body>
</html>

From the above example, we can understand that all the three
declared variables will represent the keys of the $GLOBAL associa-
tive array and their values will be displayed. Apart from this, PHP

Working with forms

www.thinkdigit.com

automatically provides the description of the PHP global variables
related to the server and client environments. Hence, these vari-
ables are called environment variables. The variables in PHP vary
depending on system, server and configuration. See the examples
of environment variables in the following table:

Example:
Name of the variable Description Example
$HTTP_USER_AGENT Client’s Name Mozilla

and version
$REMOTE_ADDR The IP address 155.148.65.33

of the client
$REQUEST_METHOD Whether the POST/GET

request was
GET or POST

$QUERY_STRING For GET requests, id=I001t&product=abcd
the encoded data
send appended to
the URL

$REQUEST_URI The full address of /php-learing
the request book/unit_07/newpage.
including html?id=I001
query string

$HTTP_REFERER The address of the http://www.ourpage.com/
page from which newpage.html
the request was made

Apart from header-oriented variables, PHP also offers certain
other global variables. You can directly access this variable as the
global variable $PHP_SELF. You can also use it as a string in the
HTML forms action argument. This saves time in hard coding the
page name. Both the global and environmental arrays in PHP are
useful in different ways.

7.2. Script to accept user input:

The HTML form can be separated from PHP code. See the example
below:

Example:
<html>
<head>

VII

92

PHP

FAST TRACK

WORKING WITH FORMS

FAST TRACK

<title>Our HTML form</title>
</head>
<body>
<form action=”ourpage.php”>
USER ID:
<input type=”text” name=”userid”>

PASSWORD:
<input type=”password” name=”password”>

<input type=”submit” value=”login”>
</form>
</body>
</html>

Here, we have created a form containing a text field with the
name ‘userid’, a text field to accept a password with the name
‘password’ and a submit button named ‘login’. Since nothing
more than a file name has been added to the action argument, it
is assumed that both the PHP file (ourpage.php), and the HTML
document are on the same directory of the server. Here we have
used the GET method discussed later.

The following code receives the user input (the code of our-
page.php):

<html>
<head>
<title>Check User Validation</title>
</head>
<body>
<?php
print “Welcome $_GET[userid]<P>\n\n”;
print “Your password is:<P>\n\n$_GET[pass-

word]”;
?>
</body>
</html>

In the above code, two variables $_GET[userid] and
$_GET[password] have been used to access the data entered by
the user in the above HTML form. Every detail that a user submits

93

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

www.thinkdigit.com

is available in the global variables having the same names as the
form elements on an HTML page.

7.3. Accessing input from various
elements of a form

In all the examples mentioned earlier, each HTML element sub-
mits a single value. Let us see what happens if an HTML element
accepts more than one value from users. This can be done by using
the selected elements in the HTML form. With the availability of
these elements, the user can choose multiple items. Look at the
following code:

<select name=”city” multiple>

Any script with this data can only access a single value corre-
sponding to the given name. This activity can be changed by
renaming the elements. Here the elements end with an empty set
of square brackets. See the example below:

Example:
<html>
<head>
<title>Fill up the Form</title>
</head>
<body>
<form action=”ourpage1.php” method=”POST”>
USER ID:
<input type=”text” name=”userid”>

CITY:
<select name=”city[]” multiple>
<option>Kolkata
<option>Delhi
<option>Mumbai
<option>Bangaluru
</select>

<input type=”submit” value=”submit”>
</form>
</body>
</html>

VII

94

PHP

FAST TRACK

WORKING WITH FORMS

FAST TRACK

The script that processes the form input, has that input in the
city [] element available in an array called $city.

<html>
<head>
<title>WELCOME PAGE</title>
</head>
<body>
<?php
print “Welcome $_POST[userid]<p>\n\n”;
print “Your city choices are:<p>\n\n”;
if (! empty($_POST[city])) {
print “\n\n”;
foreach ($_POST[city] as $val) {
print “$val
\n”;
}
print “”;
}
?>
</body>
</html>

The SELECT element is not the only one to offer multiple val-
ues. By assigning similar name to numerous check boxes, you can
select different values in a single field name. When the chosen
name ends with empty square brackets, PHP assembles the user
input for this field into an array. The SELECT element can be
replaced with a string of check boxes to bring the exact result:

<input type=”checkbox” name=”qualification[]”
value=”bca”>BCA

<input type=”checkbox” name=” qualification[]”
value=”bba”>BBA

<input type=”checkbox” name=” qualification[]”
value=”mca”>MCA

<input type=”checkbox” name=” qualification[]”
value=”mba”>MBA

95

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

www.thinkdigit.com

7.4. Accessing inputs in an associative array
Sometimes, techniques may mess up the scripts with global vari-
ables. To confine the number of globals in a script, the features
can be disabled for every form field by setting the ‘register_glob-
als’ command to off in the php.ini file.

PHP4 provides a solution to this problem. Basically, two methods
are used to submit a form, the Get or Post method. This method is
declared in the HTML form with the attribute named ‘method’. The
values submitted in a form can be accessed through the
‘$HTTP_GET_VARS’ variable, if we use the Get method. While using
the Post method the values are accessed through the
‘$HTTP_POST_VARS’ variable. The example below gives a clear idea
how to read from any form with the help of $HTTP_GET_VARS array:

Example:
<html>
<head>
<title>List of the values inserted in a

form</title>
</head>
<body>
<?php
foreach ($HTTP_GET_VARS as $key=>$val)
{
print “$key => $val
\n”;
}
?>
</body>
</html>

The above code displays the names and values of different
parameters passed through the GET transaction. The above code
will yield an output if each form element accepts a single value. If
the form element accepts multiple values, then the above code
will not be able to show those values. This problem can be solved
by testing the data type of each element in $HTTP_GET_VARS or
$HTTP_POST_VARS and by treating them accordingly. The code
below tests the data type of every element in $HTTP_GET_VARS. It
changes the output accordingly.

Example:
<html>

VII

96

PHP

FAST TRACK

WORKING WITH FORMS

FAST TRACK

<head>
<title>Reading values inserted in a form</title>
</head>
<body>
<?php
foreach($HTTP_GET_VARS as $key => $val)
{
If (gettype($val) ==”array”)
{
print “$key =>
\n”;
echo “”;
foreach($val as $individualValuel)
{
echo “”;
print “$individualValue”;
echo “”;
}
echo “”;
}
else
{
print “$key => $val
\n”;
}
}
?>
</body>
</html>

Here, we have again used the ‘foreach()’ function to navigate
through the ‘$HTTP_GET_VARS’ array. The ‘gettype()’ function is
used to confirm that the values inserted within the function are
arrays. Since the arrays are used as function values, another ‘fore-
ach’ statement is created to navigate through it. The values are dis-
played in the web browser as the output of the program.

The above code displays the values inserted in the HTML form
in section 7.3 and the output is as follows:

userid==ascascs
city ==
“ Kolkata
“ Mumbai

97

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

www.thinkdigit.com

VII

98

PHP

FAST TRACK

WORKING WITH FORMS

7.5. Get and Post method:
A flexible script has the ability to decide whether to read the
$HTTP_GET_VARS or $HTTP_POST_VARS arrays. Usually, in all sys-
tems one can trace whether the user is working with a GET or
POST method in the predefined variable $REQUEST_METHOD.
This variable should contain the string POST or GET. You can use
the isset() function to check the type of array that is to be read. The
above example can be rewritten using this concept as given below:

Example:
<html>
<head>
<title>Reading values inserted in a form after

checking the array</title>
</head>
<body>
<?php
$check = (isset($HTTP_POST_VARS)) ?

$HTTP_POST_VARS : $HTTP_GET_VARS;
echo $check;
foreach($check as $key => $val)
{
If(gettype($val) ==”array”)
{
print “$key =>
\n”;
echo “”;
foreach($val as $multi_val)
{
echo “”;
print “$multi_val”;
echo “”;
}
echo “”;
}
else
{
print “$key => $val
\n”;
}
}
?>
</body>
</html>

FAST TRACK

In the above example, the $check variable has been used by
applying the ternary operator. By using the inbuilt isset()
function, you can check if the $HTTP_POST_VARS array com-
prises elements.

Basically, both GET and POST methods are used to send data to
the data processing page. Though both methods are used in form
data handling, there are differences in their working method.
Some remarkable differences are:
● The data remains visible in the address bar since contents are

passed as part of the URL and as a query string in the GET
method. In the POST method, data is not visible as contents are
passed to the script as an input file.

● Using the GET method, you can insert a bookmark link whereas
a page link can never be bookmarked with the POST method.

● You can only transfer 1KB of data through the GET method.
Large amounts of data can be transferred through POST method,
which is determined by the ‘post_max_size’ directive in php.ini.

● In the GET method, data is submitted as a part of a URL, while in
the POST method data is submitted as part of an http request.

● In the GET method, data is swift but not secure. On the other
hand, POST data is secure and slow as compared to GET.

7.6. File upload

In the sections above, we have seen simple form input. Now we will
discuss about the features that PHP creates to work with inputs.
Here, we will learn about file uploading in PHP. PHP makes it pos-
sible to upload files to the server. To begin with, we should first
create HTML forms including file upload fields and an ENCTYPE
argument:

ENCTYPE=”multipart/form-data”
Look at the HTML form below, used for uploading

files:
<html>
<body><form action=”upload1.php” method=”post”
enctype=”multipart/form-data”>
<label for=”file”>Filename:</label>
<input type=”file” name=”uploadedfile” id=”file”

/>

<input type=”submit” name=”submit” value=”Upload”

99

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

www.thinkdigit.com

/>
</form></body>
</html>

In the above code, the enctype feature of the <form> tag focus-
es on the content category to be used for submitting the form. To
insert a binary data in an HTML form, say, the content of a file, the
“multipart/form-data” should be used. The type= “file” in the
above code implies that the input should be processed as a file.

See the upload script below:
The file name upload_file.php includes the code for

uploading a file:

Example:
<?php
if ($_FILES[“file”][“error”] > 0)
{
echo “Error: “ . $_FILES[“uploadedfile”][“error”]

. “
”;
}
else
{
echo “Uploaded File: “ . $_FILES[“uploaded-

file”][“name”] . “
”;
echo “Uploaded File Type: “ . $_FILES[“uploaded-

file”][“type”] . “
”;
echo “Uploaded File Size: “ . ($_FILES[“uploaded-

file”][“size”] / 1024) . “ Kb
”;
echo “Uploaded File Stored in: “ .

$_FILES[“uploadedfile”][“tmp_name”];
}
?>

With the use of global PHP $_FILES array, a file can be suc-
cessfully uploaded from a client computer to the remote server.
The form’s first parameter often remains input name and the sec-
ond index varies from name, type, size, tmp_name or error.
Look at the following code:

$_FILES[“uploadedfile”][“name”] - uploaded file
name

VII

100

PHP

FAST TRACK

WORKING WITH FORMS

FAST TRACK

$_FILES[“uploadedfile”][“type”] - uploaded file
type

$_FILES[“uploadedfile”][“size”] - uploaded file
size in bytes

$_FILES[“uploadedfile”][“tmp_name”] - the name of
the temporary copy of the uploaded file stored on
the server

$_FILES[“uploadedfile”][“error”] - the error code
resulting from the file upload

Using the above mentioned code, you can easily upload files.
To keep them secured, you can also add certain limitations of
uploading.

Uploading restrictions:
The script below shows certain restrictions to be followed while
uploading a file. A user may only upload JPEG or GIF files and the
file size must be less than or equal to 40KB. See the example below:

Example:
<?php
if ((($_FILES[“uploadedfile”][“type”] ==

“image/gif”)
|| ($_FILES[“uploadedfile”][“type”] ==

“image/jpeg”)
|| ($_FILES[“uploadedfile”][“type”] ==

“image/pjpeg”))
&& ($_FILES[“uploadedfile”][“size”] < 50000))
{
if ($_FILES[“file”][“error”] > 0)
{
echo “Error:” . $_FILES[“uploadedfile”][“error”]

. “
”;
}
else
{
echo “Upload File Name: “ . $_FILES[“uploaded-

file”][“name”] . “
”;
echo “Upload File Type: “ . $_FILES[“uploaded-

file”][“type”] . “
”;
echo “Upload File Size: “ . ($_FILES[“uploaded-

file”][“size”] / 1024) . “ Kb
”;

101

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

www.thinkdigit.com

echo “Upload File Stored in: “ . $_FILES[“upload-
edfile”][“tmp_name”];

}
}
else
{
echo “File not valid”;
}?>

The code above describes the creation of a temporary copy of
the uploaded files in the PHP temp folder on the server. These tem-
porary files often disappear when the script ends. Hence, to keep
them safe, you need to secure the uploaded files. Follow the exam-
ple below:

Example:
<?php
if ((($_FILES[“uploadedfile”][“type”] ==

“image/gif”)
|| ($_FILES[“uploadedfile”][“type”] ==

“image/jpeg”)
|| ($_FILES[“uploadedfile”][“type”] ==

“image/pjpeg”))
&& ($_FILES[“uploadedfile”][“size”] < 50000))
{
if ($_FILES[“uploadedfile”][“error”] > 0)
{
echo “Error Code: “ .

$_FILES[“uploadedfile”][“error”] . “
”;
}
else
{
echo “Upload: “ . $_FILES[“uploadedfile”][“name”]

. “
”;
echo “Type: “ . $_FILES[“uploadedfile”][“type”] .

“
”;
echo “Size: “ . ($_FILES[“uploadedfile”][“size”]

/ 1024) . “ Kb
”;
echo “Temp file: “ .

$_FILES[“uploadedfile”][“tmp_name”] . “
”;
if (file_exists(“upload/” .

$_FILES[“file”][“name”]))

VII

102

PHP

FAST TRACK

WORKING WITH FORMS

FAST TRACK

{
echo $_FILES[“uploadedfile”][“name”] . “ already

exists. “;
}
else
{
move_uploaded_file($_FILES[“uploadedfile”][“tmp_

name”],
“temp/” . $_FILES[“uploadedfile”][“name”]);
echo “Stored in: “ . “temp/” . $_FILES[“upload-

edfile”][“name”];
}
}
}
else
{
echo “File not valid “;
}
?>

In this way, you can check whether the same file name already
exists or not. The file gets copied to a new folder if it does not exist.

103

PHP

www.thinkdigit.com FAST TRACK

VIIWORKING WITH FORMS

www.thinkdigit.com

VIII

104

PHP

FAST TRACK

FILE MANIPULATION IN
PHP

The most fundamental advantage that any programming lan-
guage offers is the process to create and manipulate with
data structures. The structures that we create in PHP are

sometimes difficult to memorise. Usually, these include variables,
like arrays and objects or some disk units like files and database
tables. In spite of these disadvantages, the frequency, ease and con-
sistency with which a file is created, modified and erased, is more
important.

File manipulation is one of the most basic requirements for
professional programmers. PHP offers multiple options to create,
upload and edit files. In PHP, as with many other programming
languages, you can read from a file and also write into it. PHP also
offers complete scope for file and directory manipulation. With
PHP installed on your local drive, you can read and record direc-
tory contents, recover documents into different data styles and
view and transform file features. You can also change file permis-
sions and search for special files.

File manipulation is a distinguishing feature of PHP. While
manipulating a file, you must take immense care, as even a minor
mistake on your part can cause substantial damage. Some of the
common errors committed by most programmers, while manipu-
lating a file include:
● Editing a wrong file
● Filling a hard-drive with unnecessary data
● Accidentally deleting contents from a file.

8.1 Testing Files

PHP makes testing, reading and writing, simple and compact.
Before you start work with a file or a directory, always collect
detailed information. In PHP4, there are multiple options that
help in assorting information about files on your personal com-
puter. In this section of PHP, we will discuss some of the useful
facts about files. Suppose you have saved a file assigning a name to

File manipulation

it and now you want to check whether the same file name exists
or not. You can use a simple function, file_ exists(). It takes the
name (of a file or a directory) with the relative path as an argu-
ment. If the file exists, it returns true. If it returns ‘false’ then it
indicates that the file did not exist.

Sometimes, as per our requirements, we need to check the
existence of a directory. You can do this by using is_dir () function.
This function also requires a name with a relative path as an
argument and also returns a Boolean value. Look at the example:

if (is_dir(“ABC”))
print “ABC is a directory”;

The above program will print “ABC is a directory” if a directo-
ry ABC exists in the working folder/directory.

Once you are sure of the existence of the file, you can manipu-
late it in multiple ways. Now, you can easily read, write on or exe-
cute this file. PHP supports all these mechanisms. Often on UNIX
Systems, you can see a particular file, but cannot read its contents.
The ‘ is_readable()’ function briefs whether a particular file is read-
able or not. This function accepts the file path in a string and
returns a Boolean value. Look at the example:

<?php
Is_readable(“XYZ.txt”);
print “XYZ.txt is readable”;
?>

The above program will print “XYZ.txt is readable” if the file
XYZ.txt is found readable.

To confirm whether a file is writable or not, there is a sepa-
rate function named is_writable(). This function also requires a
file path. It returns a Boolean value: true if the file is writable
and false otherwise. Similarly, there is another function is_exe-
cutable() that tells whether a file is executable or not. To verify if
a file XYZ.txt is executable, you can use, ‘is_executable
(“XYZ.txt”)’. This function returns true if the file is executable
and false otherwise.

105

PHP

www.thinkdigit.com FAST TRACK

VIIIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

Ascertaining file size with file_size()
The filesize() function takes name of a file or path as an argument
and returns the file size in bytes. While working, if the path faces
any problem, it returns false. Look at the syntax to determine the
file size

<?php
print filesize(“XYZ.txt”);
?>

The above program will print the size of XYZ.txt in bytes.

Determining date information about a file:
Sometimes we need to know the time a particular file was last
written or accessed. There are certain paths like ‘fileatime()’
through which you can trace the last accessibility time of a file.
Accessing a file means, to read or write on it. The accessibility time
and dates are in the UNIX epoch format.

The information about modification of date and time of a file
can be collected using the function filemtime(). To determine
date information, it requires file path. Here, it returns the date
in the UNIX epoch format. Modification of a file suggests alter-
ing its contents.

$mod_time = filemtime(“XYZ.txt”);
print “XYZ.txt was last modified on “;
print date(“D d M Y g:i A”, $mod_time);
// Sample output: Thu 13 Jan 2000 2:26 PM]

With PHP, you can change the test time of a document using
the function ‘filectime()’. The UNIX system supplies information
about file modifications or changes. In other systems, the function
filectime() provides the creation date.

$cng_time = filectime(“XYZ.txt”);
print “ XYZ.txt was last changed on “;
print date(“D d M Y g:i A”, $cng_time);
// Sample output: Thu 13 Jan 2000 2:26 PM]

Mentioned below is an example focusing the use of a function
to output various file tests:

VIII

106

PHP

FAST TRACK

FILE MANIPULATION IN
PHP

<html>
<head>
<title> use of a function to output various file

tests </title>
</head>
<body>
<?php
$file_name = “ XYZ.txt”;
outputFileTestInfo($file_name);
function outputFileTestInfo($ file_name)
{
182
if (! file_exists($file_name))
{
print “$file_name does not exist
”;
return;
}
print “$ file_name is “.(is_file($ file_name

)?””:”not “).”a file
”;
print “$file_name is “.(is_dir($ file_name

)?””:”not “).”a directory
”;
print “$file_name is “.(is_readable($file_name

)?””:”not “).”readable
”;
print “$file_name is “.(is_writable($file_name

)?””:”not “).”writable
”;
print “$file_name is “.(is_executable($file_name

)?””:”not “).”executable
”;
print “$file_name is “.(filesize($file_name)).”

bytes
”;
print “$file_name was accessed on “.date(“D d M

Y g:i A”, fileatime($file_name)).”
”;
print “$file_name was modified on “.date(“D d M

Y g:i A”, filemtime($file_name)).”
”;
print “$file_name was changed on “.date(“D d M

Y g:i A”, filectime($file_name)).”
”;
}
?>
</body>
</html>

107

PHP

www.thinkdigit.com FAST TRACK

VIIIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

8.2 Opening files:

Before beginning to work with a file, it is indispensable to know
how to open it for different purposes. This includes reading, writ-
ing or sometimes both. PHP has the ‘fopen()’ function for this pur-
pose. The function used for opening a file should include a string
that contains a file path. It should also include another string
with the mode in which the file is expected to be opened.

Some of the common modes used in the function for opening
a file include read (‘r’), write (‘w’), and append (‘a’). Certain special
functions are applied to open files for different purposes. The fol-
lowing examples would provide the clear idea:
● File to open for reading: $fp = fopen(“XYZ.txt”, ‘r’);
● File to open for writing: $fp = fopen(“ XYZ.txt”, ‘w’);
● File to open for appending: $fp = fopen(“ XYZ.txt”, ‘a’);

If the file fails to open for any reason the function fopen()
returns false, generating a message. The following example illus-
trates this point.

<html>
<body>
<?php
$file_ptr = fopen(“welcomefile.txt”,”r”) or

exit(“Unable to open file!”);
?>
</body>
</html>

As we have seen earlier, there are three standard methods of
opening a file in PHP. However, there are certain other methods,
also, through which you can open a file so that both reading and
writing can easily be done. This is possible by inserting a plus sym-
bol (+) after the file mode.

To open a file, both for reading and writing r+ (the file point-
er should be at the beginning of the file)

To delete all information from the file when the file is opened
w+ (the file pointer should be at the beginning of the file)

To append a+ (the file pointer should be at the end of the file)

VIII

108

PHP

FAST TRACK

FILE MANIPULATION IN
PHP

8.3. Closing files:

Consider you have opened a file and have worked on it. Now you
want to close the file as an open file may disturb the server by cap-
turing the resources and causing unwanted turbulence. PHP has
functions for both opening and closing files.

It offers an easy method of closing a file. Even if you forget to
close file that is open, the server automatically closes all files
when the PHP execution is completed. It is a good practice to close
all files once you are done.

PHP provides the ‘fclose() function to close file that is open.
The ‘fclose()’ function requires the file handle to close it. Once a
file is closed using the fclose() function, it cannot be read, written
into or further appended. You can reopen the file with the same
‘fopen()’ function.

Look at the example:
1. <?php
$file_name = fopen(“XYZ.txt”,”r”);
//some code to be executed
fclose ($file_name);
?>

2. $ourFileName = “testFile.txt”;
$ourFileHandle = fopen($ourFileName, ‘w’) or

die(“can’t open file”);
fclose($ourFileHandle);

While closing a file, it is necessary to check, if the file has
reached its end. The following syntax supports this argument:

The feof() function checks if the “end-of-file” (EOF) has been
reached.

109

PHP

www.thinkdigit.com FAST TRACK

VIIIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

8.4. Reading from a file

To read information from a file, it is necessary to know the basic
function used to open a file. Look at the example below:

$myFile = “testFile.txt”;
$fh = fopen($myFile, ‘r’);
This function will open the file and you can read it. The

‘fread()’ function reads data from a file. This function requires a
file handle along with an integer to command how much data in
bytes should read at a time.

Basically, the fgets() function reads each line from a file. Read
the example below:

<?php
$file_ptr = fopen(“welcomefile.txt”, “r”) or

exit(“Unable to open file!”);
//Output a line of the file until the end is

reached

while(!feof($file_ptr))
{
echo fgets($file_ptr). “
”;
}
fclose($file_ptr);
?>

The above example describes how a function can be used to
read a file line by line. The example below would focus on how a
file can be read character by character:

Look at the code below:
<?php
$file_ptr = fopen(“welcomefile.txt”,”r”) or

exit(“Unable to open file!”);
while (!feof($file_ptr))
{
echo fgetc($file_ptr);
}
fclose($file_ptr);
?>

VIII

110

PHP

FAST TRACK

FILE MANIPULATION IN
PHP

111

PHP

www.thinkdigit.com FAST TRACK

VIIIOBJECT ORIENTATION
IN PHP

8.5. Writing to a file

Writing to a file is a major part to know about in file manipula-
tion. Basically, the fwrite() function is used to write. To write infor-
mation into a text file, first open it by using the fopen() function.
See the code below:

$myFile = “testFile.txt”;
$fh = fopen($myFile, ‘w’);

After opening the file, you can use the fwrite() command to
add data to your file. Look at the example below:

<?php
$file_name = “ourFile.txt”;
$file_Handle = fopen($file_name, ‘w’);
$file_Data = “Jane Doe\n”;
fwrite($file_Handle, $file_Data);
$file_Data = “Bilbo Jones\n”;
fwrite($file_Handle, $file_Data);
print “Data Written”;
fclose($file_Handle);
?>

After working on the file, close the file using the fclose func-
tion to keep the document safe. In the above example you can
notice that at the end of every data string, we have used \n.

8.6. Locking files

If you are through with the input and output operations, lock it
immediately. This should be done each time you do an input and
output operation if you have opened a file to read and write data.
Now, unless you lock this file, the authenticity of the file cannot
be maintained. Mere knowledge of reading and learning files can
only help when a script is presented to a single user. However, if
you want to make your file accessible to multiple users at the
same time, PHP4 has provision for this. It provides the flock() func-
tion with which you can lock your existing document.

www.thinkdigit.com

flock() not only locks an existing document, but also pre-
vents the file from further writing or reading. The flock() func-
tion always requires a file pointer. Therefore, sometimes you have
to use one special lock file to prevent file access. A file locking sys-
tem requires a modern approach. In PHP, the flock system is used
virtually at different stages.

In PHP, a complete file can be locked in an advisory pattern.
This suggests that all other programs are entitled to use the simi-
lar locking manner unless they do not work. A file locked using
flock can be released by fclose().

flock considers the file handle as the first parameter, while the
entire lock operation follows next. The operations applied in PHP
include LOCK_SH (requests a shared lock), LOCK_EX (requests an
exclusive lock), and LOCK_UN (releases a lock). In a PHP file, flock
can be used in the following manner:

<?php
$file_ptr = fopen(“XYZ.txt”, “w”);
if (flock($file_ptr, LOCK_EX)) {
print “Got lock!\n”;
sleep(10);
flock($file_ptr, LOCK_UN);
}
?>

File locking in PHP requires a complete unconventional
approach. It cannot be done in the original Microsoft’s FAT file
system’s version used on Windows 95 and 98. Both NTFS and
FAT32 can work for file locking in PHP. All the processes them-
selves get locked in PHP by default. The example below can focus
on the concept:

<?php
$file_ptr = fopen(“XYZ.txt”, “w”);
if (flock($file_ptr, LOCK_EX)) {
print “Got lock!\n”;
sleep(10);
flock($file_ptr, LOCK_UN);
}
?>

VIII

112

PHP

FAST TRACK

FILE MANIPULATION IN
PHP

8.7. Miscellaneous shortcuts
With a comprehensive knowledge on opening and writing of files,
you must now be confident enough to attempt different activities
with a file. Here are some miscellaneous shortcuts for PHP and the
related concepts.

Using these shortcut methods, you can perform different file
manipulation activities in PHP. One thing you should necessarily
know is that all the shortcut methods require PHP5.

Instead of fopen() and fread(), you can simply use
file_get_contents to read and open a file. You only require the file
name. By giving a file name, you will receive a series of related
contents. See the code below:

<?php
$file_contents =
file_get_contents('XYZ.txt');
?>

PHP also offers a shortcut for writing on a file. Instead of fol-
lowing the detailed process, you can apply the shortcut method
for fwrite mentioned below:

<?php
file_put_contents(‘XYZ.txt’, ‘Hello World!’);

113

PHP

www.thinkdigit.com FAST TRACK

VIIIOBJECT ORIENTATION
IN PHP

www.thinkdigit.com

IX

114

PHP

FAST TRACK

SAVING STATE IN PHP

HTTP is considered a stateless protocol. Hence, whenever you
download a page from your server, it presents a separate
connection. There must be some process by which infor-

mation stored in one page can be accessed by subsequent pages.
Here we will see some of these processes in brief.

9.1. Setting a cookie

In PHP, a cookie is set in the following ways:

setcookie() function: As the name suggests, setcookie() outputs a
header and is used before sending any content to the browser. The
function has certain optional and essential attributes. Cookie
value, expiry date in UNIX epoch format, domain, path and inte-
ger are the optional attributes. Only the cookie name is the essen-
tial attribute of the setcookie() function.

Example:
<?php
$cookie_val =”We are testing cookies”;
setcookie(“OurCookie”, $cookie_val);
setcookie(“OurCookie”, $cookie_val, time()+3600);
if (isset($_COOKIE[‘OurCookie’]))
{
echo $_COOKIE[“OurCookie”];
}
?>

Here, either statement in line 2 or line 3 can be used to set the
cookie. The value assigned to a cookie variable can also be accessed
from other pages. The example given below displays the cookie
created in the above example:

Example:
<?php
echo $_COOKIE[“OurCookie”];
echo $HTTP_COOKIE_VARS[“OurCookie”];
?>

Saving state in PHP

IX

Cookies can also be set in array as given below:
<?php
setcookie(“owncookie[a]”, “First Cookie”);
setcookie(“owncookie[b]”, “Second Cookie”);
setcookie(“owncookie[c]”, “Third Cookie”);
if (isset($_COOKIE[‘owncookie’])) {
foreach ($_COOKIE[‘owncookie’] as $cookiename =>

$Ourcookie) {
echo “$cookiename : $Ourcookie
\n”;
}
}
?>

print_r($_COOKIE); can be used to display all the available
cookies

9.2. Deleting a cookie

For deleting a cookie, setcookie() is called with the name argu-
ment like setcookie(“Ourcookie”). However, this argument
does not work always. Hence, it is advised to set the cookie with an
already expired date. Look at the delete example below:

Example:
<?php
setcookie(“Ourcookie “, “”, time()-3600);
?>

9.3. Creating session cookie

For creating a cookie that is valid till the user runs his/her brows-
er, you can pass setcookie() with an expiry argument of 0. In such
a case, your browser continues to run and cookies are returned to
the server. Once the browser quits and restarts, it does not remem-
ber them.

This is useful for the scripts validating a user with a cookie.
This also enables you to have regular access to personal informa-
tion on different pages, once the password is submitted.

See the syntax below:
setcookie(“session_id” , “66343” , 0) ;

115

PHP

www.thinkdigit.com FAST TRACK

SAVING STATE IN PHP

www.thinkdigit.com

9.4. Working with query string

A query string plays a pivotal role in making web applications. A
cookie file is completely dependent on the client when the com-
plete function depends on frequent accessibility of users. When a
form is submitted using the GET method, the fields and values are
encoded with a URL and the filled form is sent. A form with two
fields including user_id and name ends up like, http://www.our-
site.co.in/qstring.php?name=abcd&user_id=xyz+pqr.

Here, every name and value is divided by an equal (=) operator.
The names and value pair are separated by an ampersand sign (&).
In PHP, the strings are decoded and pairs are available in the
$HTTP_GET_VARS array. You access the user_id using the GET
parameter. You can use the GET array as:

$HTTP_GET_VARS[user_id];

Creating a query string:
A query string can be created with a URL for encoding the keys and
values. Suppose you have to pass a URL to another page as a query
string, then a forward slash and the colon sign appear ambiguous
to the parser. Therefore, convert the URL into hexadecimal char-
acters. To do this, use PHP’s urlencode() function. This accepts a
string as an argument and returns an encoded copy such as print
urlencode(http://www.oursite.co.in);

// prints http%3A%2F%2Fwww. oursite.co.in

Look at the example on query string made from two variables:
Example:
<?php
$name = “john”;
$ourpage = “http://www.oursite.co.in”;
$query_string = “ourpage=”.urlencode($ourpage);
$query_string .= “&name=”.urlencode($name);
?>
<a href=”ourpage.php?<?php echo $query_string

?>”>Go
To dynamically make a query string, use the

http_build_query () function.
Function to create string:
<html>

IX

116

PHP

FAST TRACK

SAVING STATE IN PHP

IX

<head>
<title>We are learning Query String</title>
</head>
<body>
<?php
$arr_query = array (
‘prod_id’ => “P001”,
‘prod_name’ => “New Produst”,
‘homepage’ => “http://www.oursite.co.in/”
);
$query_string = http_build_query($arr_query);
print $query_string;
?>
<p>
<a href=”ourpage.php?<?php print $query_string

?>”>Move!
</p>
</body>
</html>

9.5 Session function

Session functions provide a unique identifier. This can be used to
acquire information from accessing points. The cookies are also
used in the session function by default. Usually the session states
are stored in a temporary file.

The session_start() function creates session or resumes
the current one based on the current session id that’s being
passed via a request, such as GET, POST, or a cookie. Session id can
be accessed using the session_id() function.

Usually session_start() function returns true. While using
cookie-based sessions, we can use the session_start() before out-
putting anything to the browser. Look at the following example:

Example:
<?php
session_start();
echo ‘We are in ourpage’;
$_SESSION[‘name’] = ‘John’;
$_SESSION[‘add’] = ‘Kolkata’;

117

PHP

www.thinkdigit.com FAST TRACK

SAVING STATE IN PHP

www.thinkdigit.com

$_SESSION[‘time’] = time();
echo ‘
page 2’;
echo ‘
<a href=” ourpage.php?’ . SID .

‘“>page 2’;
?>

The page ourpage.php contains the session data when this
page will be navigated through the above example.

9.6. Session variables

Sessions in PHP are like the server side cookie files. It stores vari-
ables. PHP scripts can be read as well as these stored variables can
be written. Session files are created as per user requests. These files
can only be accessed on the request of the same user. For example,
take an HTML form with a user name and occupation. This HTML
form transmits the data to other pages with a session file.

The new data page comprises of one HTML form requesting a
user to enter his/her name and occupation. The details are then
passed as name-value pairs, called $name and $job to a PHP page.
The PHP pages store all the information as session variables. The first
part of the code on the HTML page and all other pages is required for
accessing the following variables: <?php session_start(); ?>

The code mentioned above, basically has two functions and
performs as per your request. If you do not have a session, it cre-
ates a new session. It connects to the existing session file, if you
have a session. After a new session is created, a session identifier
is generated by the PHP session management. This session identi-
fier is a string comprising of 32 hex digits. It creates an empty ses-
sion file on the server as ‘sess_’ followed by the session identifier.
In turn, it creates a set-cookie and a session cookie in the browser
according to the session identifier value.

Any request by the user to the server includes the session iden-
tifier with PHP connecting to the exact session file. Going back to
the HTML form page, an HTML form is created on the user’s brows-
er. The user fills in the required details and clicks on the send but-
ton. The filled form with variables is sent to the PHP page storing
the variables. Now the code appears as follows:

IX

118

PHP

FAST TRACK

SAVING STATE IN PHP

IX

<?php
session_start(); // It connects to the existing

session or starts a new session
session_register (“id”); // It creates a session

variable called id
session_register (“prod”); // It creates a ses-

sion variable called prod
$HTTP_SESSION_VARS [“id”] = $id; // It sets value

of id by variable $id
$HTTP_SESSION_VARS [“prod”] = $prod; // It sets

value of job by variable $prod
?>

The code mentioned above first connects to the session that is
already present. It now creates two session variables with values set
from the HTML form. As a PHP variable is added to a session file, it
uses session_register() function. Only the variable name is written
and the code appears $HTTP_SESSION_VARS(“id”) = $id is used.

When PHP variables are referred in a session file, the dollar ($)
sign is not used. It is only used when the variables are used in the
script. Once a session variable is registered, it is used like a normal
PHP variable. A script with an updated session variable does not
require an updated session file. Session management automati-
cally does this with the end of the script. Therefore the script
would appear as:

$name = “myname”;

The new value is automatically written to the session file. To
create a new session variable, the following code can be used:

session_register (“variable_name”);
$variable_name = “newvar”;

The above mentioned variable is available to all PHP pages con-
necting to the session that uses session_start(). Since the values of
the form variables are stored, any PHP page that connects to the
session, can read the variables.

To destroy a session file, use the following function:
session_destroy();

119

PHP

www.thinkdigit.com FAST TRACK

SAVING STATE IN PHP

www.thinkdigit.com

The following example tells you how to access registered
variables:

Example:
<?php
session_start();
?>
<html><head>
<title>Accessing session variable</title>
</head>
<body>
<?php
echo “Value of session variable:\n\n”;
echo $_SESSION[variable_name];
?>
</body>
</html>

IX

120

PHP

FAST TRACK

SAVING STATE IN PHP

X

121

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

Let’s go through some of the advanced features of PHP like Date,
Secure E-mail, Include, E-mail, Error, PHP Filter and PHP
Exception:

10.1. Date

In PHP the date() function is used to format a timestamp or a
date. It arranges a timestamp into a readable date and time. Using
the date/ time functions, you can format date and time on the
server. However, these functions entirely depend on the server set-
tings. Here you can use the syntax, date (format, timestamp). Look
at the table below:

PPaarraammeetteerr DDeessccrriippttiioonn
Format This parameter is essential.

It assigns the timestamp format.
Timestamp This Parameter is optional. This takes the Date or/and

time that you want to format. If no value is provided
then the current time is used for formatting.

In PHP, timestamp is the number of seconds since January 1,
1970 at 00:00:00. This is also termed as, ‘Unix Timestamp’.

In the date function, the first parameter specifies about for-
matting date and time. Several letters are used to represent date
and time formats. Some commonly used letters are given below:
● d - Represents day of a month (01-31)
● D - Represents day in three letter text format
● m - Represents month, as a number (01-12)
● M - Represents month in three letter text format
● Y - Represents year in four digits
● y - Represents year in two digits

Some other frequently used characters are “/”, “.”, or “-” etc.
Basically, these characters are inserted between letters to add addi-
tional formatting. Look at the code below:

Advanced PHP

www.thinkdigit.com

Example:
<?php
print date(“y/m/d”);
print “
”;
print date(“Y.M.D”);
print “
”;
print date(“d-m-y”);
?>
The output of this code is as follows:
08/11/14
2008.Nov.Fri
14-11-08

A timestamp can be added in PHP date. In the date() function,
the second parameter specifies the timestamp. Since this is an
optional parameter, even if you do not supply a time stamp, the
current time is automatically used.

Let us now discuss about the mktime() function. It is used to
create a timestamp for the following day. The mktime() function
returns the Unix timestamp for a particular date. The syntax is as
follows:

mktime(hour,minute,second,month,day,year,is_dst)

Here all the arguments are integers.

To count a day in the future, add one to the day argument of
mktime(). Look at the code below:

Example:
<?php
$nextweek =

mktime(0,0,0,date(“m”),date(“d”)+7,date(“Y”));
echo “Next “.date(l).” will be on “.date(“d/m/Y”,

$nextweek);
?>

The output of the above code is:
‘Next Friday will be on 21/11/2008’.

Since date/time functions are the parts of PHP core, no instal-
lation is required to use this function.

X

122

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

10.2. Include
‘Server Side Includes’ are used to create functions, headers, footers
and certain other elements which can be reused on multiple
pages. You can insert file content into a PHP file by using either
the include() or require() function. Both the include() and require()
functions are identical. The only difference lies in the way they
handle errors. While the include() function generates a warning,
the require() function generates a fatal error.

This feature of ‘include’ is beneficial on the part of the devel-
oper, as it saves considerable amount of time. You can also create
a standard header or menu file to include in all web pages. If you
want to update the header, simply update one include file. You can
also change the menu file to add a new page to your site.

Suppose you have a standard PHP file named “firstpage.php”.
You can include this file in a page by using the example below:

Example:
firstpage.php
<?php
$name = “John”;
$address = “kolkata”;
?>
secondpage.php
<?php
include(“firstpage.php”);
echo “Your name is “.$name.” and you live in

“.$address;
?>
In the above example, the “firstpage.php” file with all its con-

tents is included in “secondpage.php”. To use a standard menu
file in all pages, you can use the include() function. Let the code for
creating menu be written in a file named “menu.php”. Now you
have to include this file in all the pages using include() function.

require():
When a file is included with the include() function, it returns an
error message as shown in the following example:

Example:
<html>
<body>

123

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

<?php
include(“notexist.php”);
echo “Why are you doing this!”;
?>
</body>
</html>

Error message:
Warning: main(notexist.php) [function.main]:

failed to open stream: No such file or directory
inc:\wamp\www\php_check_bs\adv6.php on line 4

Warning: main() [function.include]: Failed open-
ing ‘notexist.php’ for inclusion
(include_path=’.;C:\php5\pear’) in
c:\wamp\www\php_check_bs\adv6.php on line 4

Why are you doing this!
Let us use the above example with the require() function:
Example:
<html>
<body>
<?php
require(“notexist.php”);
echo “Why are you doing this!”;
?>
</body>
</html>

Error Message:
Warning: main(notexist.php) [function.main]:

failed to open stream: No such file or directory in
c:\wamp\www\php_check_bs\adv6.php on line 4

Fatal error: main() [function.require]: Failed
opening required ‘notexist.php’
(include_path=’.;C:\php5\pear’) in
c:\wamp\www\php_check_bs\adv6.php on line 4

The echo statement has not been executed here as the script
execution has been stopped after the fatal error. It is advised to use
the require() function in place of include() because the scripts can-
not be repeatedly executed if the files are missed or miscalled.

X

124

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

10.3. E-mail
With PHP you can send e-mails directly from a script. With mail(),
the messages are automatically mailed to the specified receiver.
Similar mails can be forwarded to multiple recipients by putting
a comma in the ‘to’ column between the addresses. This function
can be applied to send some special content types as well as emails
with attachments.

This function takes receiver(s) email-id, subject, content of
mail, additional headers like Cc, Bcc, etc. and additional parame-
ters as arguments. The last two arguments are optional.

On successful delivery of the mail, mail() returns TRUE, other-
wise a FALSE value is returned.

Example:
<?php
mail(“abc@ourmail.com”, “urgent”, “Hello\nHow are

you”);
?>

To pass a fourth string argument, you can insert it at the end of
the header. You can also add extra headers by using this function.
Multiple headers can also be added. Here we need to use a carriage
return and a new line to separate each header from the other. While
sending the mails we must separate the headers using \r\n.

Following code can be used to send mail with extra headers:
<?php
$receiver = “myfriend@ourmail.co.in”;
$subject = “wish”;
$content = “Hi! My dear friend how are you.”;
$sender = “myself@ ourmail.co.in “;
$headers = “From: $sender”;
mail($receiver,$subject, $content,$headers);
echo “Mail has been sent successfully.”;
?>

To send mail with extra headers and additional command line
parameter use the code below:

<?php
mail(“myfriend@ourmail.co.in “, “$subject”, $con-

tent,

125

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

$header, “- fwebmaster@ourmail.com”);
?>

To create some complex email messages you can also use sim-
ple string building techniques:

<?php
$receiver = “mary@example.com” . “, “ ;
$receiver .= “kelly@example.com”;
$subject = “Important day”;
$content = “
<html>
<head>
<title> important days </title>
</head>
<body>
<p> Some important days!</p>
<table>
<tr>
<th>Event</th><th>Day</th><th>Month</th>
</tr>
<tr>
< t d > R e p u b l i c

day</td><td>26th</td><td>January</td>
</tr>
<tr>
<td>May day</td><td>1st</td><td>May</td>
</tr>
<tr>
< t d > I n d e p e n d e n c e

day</td><td>15th</td><td>August</td>
</tr>
</table>
</body>
</html>
“;
$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: text/html;

charset=iso-8859-1\r\n”;
$headers .= “To: raja<raja@ourmail.com>,

rahim<rahim@ ourmail.com >\r\n”;
$headers .= “From: Event Reminder <remind@our-

X

126

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

mail.com>\r\n”;
$headers .= “Cc: john@ourmail.com\r\n”;
$headers .= “Bcc: karan@ourmail.com\r\n”;
mail($receiver, $subject, $content, $headers);
?>

While using the code be sure you do not use any new line char-
acters in the ‘to’ or subject field, else the mail may not be sent.

10.4. Secure email

Secure email is another characteristic of PHP. You can keep your
mails secure from others for opening and inserting data. This can
be done by validating inputs. See the code below:

<html>
<body>
<?php
if (isset($_REQUEST[‘mail’]))
{
$mail = $_REQUEST[‘mail’] ;
$sub = $_REQUEST[‘sub’] ;
$msg = $_REQUEST[‘msg’] ;
mail(“myfriend@ourmail.co.in”, “Subject: $sub”,
$msg, “From: $mail”);
echo “mail is ready”;
}
else
{
echo “<form method=’post’ action=’ourmail.php’>
mail-id: <input name=’mail’ type=’text’ />

Subject: <input name=’sub’ type=’text’ />

Content:

<textarea name=’msg’ rows=’10’ cols=’50’>
</textarea>

<input type=’submit’ />
</form>”;
}
?>
</body>
</html>

127

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

The above code is not secure, as even an unauthorised user can
insert data into the mail headers through the input form. Suppose
the user adds the text given below into the email input field with-
in a form:

myfriend@ourmail.co.in%0ACc:newfriend1@ our-
mail.co.in

%0ABcc: newfriend2@ourmail.co.in, newfriend3@
ourmail.co.in,

a n o t h e r f r i e n d 1 @ o u r m a i l . c o . i n ,
anotherfriend2@ourmail.co.in

%0ABTo:anotherfriend3@ourmail.co.in

The above text is put into the mail headers by the mail() func-
tion. Now the new header comprises of extra Cc:, Bcc:, and To:
field. As the user clicks on the submit button, the email is sent to
the supposed addresses.

The following is a piece of code which checks whether the
email address that was provided is a valid email address or not:

<html>
<body>
<?php
function mailcheck($check_mail)
{
$check_mail = filter_var($check_mail, FILTER_SAN-

ITIZE_EMAIL);
i f (f i l t e r _ v a r ($ c h e c k _ m a i l ,

FILTER_VALIDATE_EMAIL))
{
return TRUE;
}
else
{
return FALSE;
}
}
if (isset($_REQUEST[‘mail’]))
$validate_mail = mailcheck($_REQUEST[‘mail’]);
if ($validate_mail ==FALSE)
{

X

128

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

echo “Can’t send “;
}
else
{
$mail = $_REQUEST[‘mail’] ;
$sub = $_REQUEST[‘sub’] ;
$msg= $_REQUEST[‘msg’] ;
mail(“myfriend@ourmail.co.in”, “Subject: $sub”,
$msg, “From: $mail”);
echo “mail is ready”;
}
}
else
{
echo “<form method=’post’ action=’ourmail.php’>
Email: <input name=’mail’ type=’text’ />

Subject: <input name=’sub’ type=’text’ />

Message:

<textarea name=’msg’ rows=’10’ cols=’50’>
</textarea>

<input type=’submit’ />
</form>”;
}
?>
</body>
</html>

The PHP filters have been used to validate input in the above
example:
● All illegal e-mail characters from a string are removed by the FIL-

TER_SANITIZE_EMAIL.
● The FILTER_VALIDATE_EMAIL filter validates value as an e-mail

address.

10.5. Error

In PHP, default error handling is very simple. It returns an error
message with line number, filename and a message indicating
that the error is sent to the browser. Error handling plays an
important role when creating scripts and web applications. A pro-
gram with no error checking code appears very unprofessional.

129

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

The program also remains open to security risks.
There are three different error handling methods which

include:
● Simple “die()” statements
● Custom errors and error triggers
● Error reporting

Simple “die()” statements:
The example below shows a simple script for opening a text

file:
<?php
$fptr=fopen(“newfile.txt”,”r”);
?>

When a file does not exist, it returns an error message like:
Warning: fopen(newfile.txt) [function.fopen]:

failed to open stream:
No such file or directory in C:\wamp\www\test.php

on line 2

To avoid the error message, test the existence of the file before
accessing it. Use the code below:

<?php
if(!file_exists(“newfile.txt”))
{
die(“File not exists”);
}
else
{
$fptr=fopen(“newfile.txt”,”r”);
}
?>

It returns an error message ‘File does not exist’ if the file does
not exist. In the above code, a simple error handling mechanism
has been used, which stops the script after the error occurs. PHP
offers some alternative error handling functions such as:

Creating a custom error handler:
It is easy to create a custom error handler. You can simply create a
special function and use it just as an error occurs in PHP. This func-

X

130

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

tion basically handles two parameters including error level and
error message. It accepts around five parameters optionally includ-
ing file, line-number, and error context. Look at the syntax below:

error_handler(error_level,error_message,error_fi
le,error_line,error_context)

Parameter Description
error_level Essentially required to specify the error report

level for the user-defined error.
error_message Essential for indicating the error message for the

user- specific error.
error_file Completely elective. It indicates the filename in

which the error occurred.
error_line Elective option. It targets the line number where

the error occurred.
error_context Also an elective option. It indicates to an array

that contains variable and their values. The array
is used at the time when an error occurs.

Error report levels:
The error report levels are the collections of different types of
errors. The user defined error handlers are used for the following
purposes:

VVaalluuee CCoonnssttaanntt DDeessccrriippttiioonn
2 E_WARNING Non-fatal run-time errors. Script

execution is not halted.
8 E_NOTICE Run-time notices. The script

found something that might be an
error. It could also happen while
running a script normally.

256 E_USER_ERROR Serious user-generated error. This
is like an E_ERROR arranged by
the programmer using the PHP
function trigger_error()

512 E_USER_WARNING Simple user generated warning
like E_WARNING arranged by the
programmer with the help of PHP
function trigger_error()

131

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

1024 E_USER_NOTICE User-generated notice like
E_RROR. It can be traced by a user
defined handle

4096 E_RECOVERABLE_ERROR Traceable serious error like an
E_ERROR. It can be traced by a
user defined handle.

8191 E_ALL All errors and warnings leaving
E_STRICT.

Let us create a function to handle errors:
function error_handler($error_number, $error_msg)
{
echo “Error: [$error_number] $error_msg

”;
echo “End of error message”;
die();
}

The above mentioned code is a simple error handling function.
As it is activated, it gets the error number and an error message. It
terminates the script. As you create an error handling function,
you need to decide when to trigger it.

Set error handler:
In PHP the default error handler is the built in error handler.
These can be changed for applying it to some errors. This way, the
script can handle different errors in various ways. Look at the code
below:

set_error_handler(“customError”);

In the above example, the custom error handler has been used
for the errors. The set_error_handler() requires one parameter.
However, to specify an error level a second parameter can be added.

Example:
<?php
function error_handling($error_number,

$error_msg)
{
echo “Error: [$error_number] $error_msg “;
}
set_error_handler(“error_handling “);

X

132

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

echo($error_test);
?>
‘Error: [8] Undefined variable: error_test’ will

be the output of the above code.

Trigger an error:
To input an error in a data, it is necessary to trigger errors just as
an illegal input occurs. This is done by the trigger_error() function
in PHP. See the example below:

Example:
<?php
$val=110;
if ($val>100)
{
trigger_error(“Number is greater than 100”);
}
?>

The output of the above code is:
Notice: Number is greater than 100

An error can be traced anywhere in a script. With the help of a
second parameter you can specify the error level. Some of the com-
mon error types are discussed below:
● E_USER_ERROR - Serious user-generated run-time error. It can

not be easily recovered. The script execution is
halted.

● E_USER_WARNING - Non-fatal user-generated run-time warning.
Execution of the script is not halted

● E_USER_NOTICE - Default. User-generated run-time notice.

The example below is relevant to our discussion above:
Example:
<?php
function error_handling($error_number,

$error_msg)
{
echo “Error: [$error_number] $error_msg
”;
echo “We are in error handler”;
die();

133

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

}
set_error_handler(“error_handling”,E_USER_WARN-

ING);
$val=220;
if ($test<200)
{
trigger_error(“Number is greater than

200”,E_USER_WARNING);
}
?>

The output of this code is:
Error: [512] Number is greater than 200
We are in error handler

Error Logging:
We discussed about creating errors and triggering them. Let us
now discuss about error logging. In PHP, an error log is passed by
default to the servers logging system or a file. This depends on the
manner in which the error_log configuration is set in the php.ini
file. With the help of error_log() function error logs can be sent to
a specific file or destination.

Send an error message by email:
You can also send error messages by e-mail. In fact this is one fea-
sible way of notifying some specific errors. See the example below:

Example:
<?php
function error_handling($error_number,

$error_msg)
{
echo “Error: [$error_number] $error_msg
”;
echo “We are in error handler”;
error_log(“Error: [$error_number] $$error_msg”,1,
“myfriend@ourmail.co.in”,”From: allfriend@our-

mail.co.in”);
}
set_error_handler(“error_handling”,E_USER_WARN-

ING);
$val=220;

X

134

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

if ($val>200)
{
trigger_error(“Number is greater than

200”,E_USER_WARNING);
}
?>

Caution: The error_log function should not be used with all errors.
Frequent errors should be logged on the server using the default PHP log-
ging system.

10.6 PHP exception

‘PHP Exception’ was introduced in PHP5. By using the ‘Exception’
model, PHP changes the normal flow of a script if a specific error
(mismatched condition) takes place. This feature of PHP saves the
current code state. Here, it stops the program execution and exe-
cutes a custom exception handler function. It can also terminate
the program execution if necessary. In this case, it starts to go on
with the script from a different location in the code.

Example:
<?php
function test($val) {

if (!$val) {
throw new Exception(‘Division by zero.’);

}
else return 1/$val;

}
try {

echo test(12) . “\n”;
echo test(0) . “\n”;

} catch (Exception $e) {
echo ‘Throw Exception: ‘, $e->getMessage(),

“\n”;
}

echo ‘LearningException’;
?>

The output of the above program is:
0.0833333333333 Throwexception: Division by zero.
LearningException

135

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

Let’s look at some of the in built functions of PHP that are used
in the ‘Exception handling’:
● Exception::__construct: This function is used to construct vari-

ous exceptions.
● Exception::getMessage: This function is used to get the Exception

message.
● Exception::getCode: This function provides the Exception code.
● Exception::getFile: This function is used to get the file where the

exception occurred.
● Exception::getLine: This function is used to get the line where

the exception occurred.
● Exception::getTrace: This function is used to get the stack trace.
● Exception::getTraceAsString: This function is used to get the

stack trace as a string.
● Exception::__toString: This function is used for the string repre-

sentation of the exception.
● Exception::__clone: This function is used to get the clone of the

exception.

10.7 PHP filter

As the name suggests, ‘PHP filters’ are used to filter the data col-
lected from unauthentic sources. The user inputs and the data col-
lected from different web services are often harmful for web
application. These external data are not secure. Besides filtering,
the PHP filters validate and test the custom data and the user
inputs.

The external data filtered by the PHP Filters includes cookies,
web-server variables, database query results, form elements and
the web service data.

In PHP we have two types of Filters:
● Validating Filters: These are used to validate the user inputs. It

returns the desired category as true value. A ‘False’ value is
returned if it is not successful.

● Sanitizing Filters: These are used either to allow or disallow a
specific character in a strings. This function always returns the
string.

PHP provides us various in-built filter functions, such as:

X

136

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

● filter_var()
● filter_var_array()
● filter_input
● filter_input_array
● filter_has_var()
● filter_id()
● filter_list()

filter_var()
The filter_var() function is used to filter a single variable with a
specific filter. Look at the syntax of filter_var() below:

filter_var(variable, filter, options)
Example:
<?php
if(!filter_var(“myfriend@ourmail...co.in”, FIL-

TER_VALIDATE_EMAIL))
{
echo(“E-mail is not valid”);
}
else
{
echo(“E-mail is valid”);
}
?>

The output of the above program is:
E-mail is not valid

filter_var_array()
The ‘filter_var_array()’ function is used to filter various variables
by using the same or some other filters. Look at the syntax of the
function:

filter_var_array(array, args)
See the following example:
Example:
<?php
$our_array = array
(
“prod_id” => “p001”,
“price” => “500”,
“comp_mail” => “newcompany@ourmail.com”,

137

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

);
$array_filter = array
(
“prod_id”=> array
(
“filter”=>FILTER_CALLBACK,
“flags”=>FILTER_FORCE_ARRAY,
“options”=>”ourwords”
),
“price” => array
(
“filter”=>FILTER_VALIDATE_INT,
“options”=>array
(
“low_price”=>200,
“high_price”=>1000
)
),
“comp_mail”=> FILTER_VALIDATE_EMAIL,
);
print_r(filter_var_array$our_array, $array_fil-

ter));
?>
The output of the above program is:
Array
(
[name] => p001
[age] => 500
[email] => newcompany@ourmail.com
)

filter_input
The ‘filter_input()’ function is used to get and filter one input vari-
able. Look at the syntax of this function:

filter_input(input_type, variable, filter,
options)

Example:
<?php
if (!filter_input(INPUT_POST, ‘email’,

FILTER_VALIDATE_EMAIL))
{

X

138

PHP

FAST TRACK

ADVANCED PHP

FAST TRACK

X

echo “Invalid mail”;
}
else
{
echo “valid mail “;
}
?>

filter_input_array
The ‘filter_input_array()’ function is used to get and filter differ-
ent variables of input by using various filters. Look at the syntax
of this function:

filter_input(input_type, args)

filter_has_var()
The ‘filter_has_var()’ function is used to verify the existence of a
specified variable. Look at the syntax of this function:

filter_has_var(type, variable)
Look at the following example:
Example:
<?php
if(!filter_has_var(INPUT_GET, “roll”))
{
echo(“Roll does not exist”);
}
else
{
echo(“Roll exists”);
}
?>

filter_id()
The ‘filter_id()’ function is used to return the filter ID of a named
filter. Look at the syntax of this function:

filter_id(filter_name)

Note the following example:
Example:
<?php
echo(filter_id(“validate_email”));
?>

139

PHP

www.thinkdigit.com FAST TRACK

ADVANCED PHP

www.thinkdigit.com

filter_list()
The ‘filter_list()’ function is used to return a catalog of various sup-
ported filters. Look at the syntax of this program:

filter_list()

Example:
<?php
print_r(filter_list());
?>

Supplementary filtering options can be added by using
‘Options’ and ‘Flags’.

X

140

PHP

FAST TRACK

ADVANCED PHP

11. PHP and databases

PHP has become widely popular due to its capacity to use varied
and powerful database systems. Website content is made dynamic,
interactive and flexible with the help of a database.

Databases are collection of data, stored separately in such a
manner that you can easily recover it. Database information is
stored in table format. The tables are divided into rows and
columns, separating the data uniformly. Each row in a table rep-
resents a single record like name and address. In each column of
a table, a uniform record is maintained like the first name of an
individual and his/her contact number. A database in such format
arranges a record according to the values available in the column
exactly like a spreadsheet program.

In this way, you can easily retrieve a record from a database
without keeping in mind how the data has been arranged into a
table. Basically, most of the database systems use the SQL. There
are several Database Management Systems available in the Market.
Mysql, Microsoft SQL Server, Oracle are among others. MySQL is
the most popular Open Source Database Management System and
for this ‘Open Source’ nature it is widely used among the web
applications that use PHP.

PHP performs various inbuilt functions with certain databases
such as MySQL database, SQL Server, Oracle and others. PHP sup-
ports databases in multiple ways. It supports various databases as:

● Informix
● DBM (Berkeley)
● MSSQL (Microsoft)
● Sybase
● Oracle 8
● PostgreSQL (Berkeley, open source)
● MySQL (Open source)

141www.thinkdigit.com FAST TRACK

PHP and databases

www.thinkdigit.com

There are certain databases which are supported by PHP
through protocol-based functions. These include:
● ODBC
● LDAP
● DBM style

Let us discuss about each of these databases in detail:
Informix: the Informix driver is employed for Informix (IDS) 7.x,
SE 7.x, Universal Server (IUS) 9.x and IDS 2000 in “ifx.ec” and
“php_informix.h” in the informix extension directory. IDS 7.x sup-
port is finished with a good support for BYTE and TEXT columns.
IUS 9.x support is not completed fully. Here we have some new
data types except SLOB and CLOB as these supports are not yet
completed.

DBM (Berkeley): DBM functions provide certain high performance
implementations and source codes relevance, for different inter-
face applications. Apart from this, they cannot be used for any
other functions. The DBM applications can be compiled by replac-
ing the application’s #include of the DBM or NDBM include file.
The lines mentioned below focus on this concept:

#define DB_DBM_HSEARCH 1
#include <db.h>
‘dbm datum typedef’ basically describes two objects including

key and content. A dbm data focuses on a series of dsize bytes pre-
sented by the dptr. It also includes binary data as well as text
strings. A dbm database can be opened by the dbminit function.
This helps in opening and creating a database file.db. The open
database can be closed by calling dbmclose.

MSSQL (Microsoft): PHP uses MySQL server in a stack of software
such as LAMP or WAMP stacks. In some occasions, PHP uses MSSQL
databases in the back-end. With the PHP scripts certain web appli-
cations are also made, exposing the MSSQL Databases. The MSSQL,
a relational database management system, was produced by
Microsoft. MS-SQL and T-SQL are the two query languages of
MSSQL.

Sybase: Sybase provides a detail introduction about Sybase SQL
Server. It also offers the system model and some tools and compo-
nents of the Sybase System 11. It is a client server database engine.

XI

142

PHP

FAST TRACK

PHP AND DATABASES

XI

With Sybase installed on your local drive, you can focus more on
writing application than writing data access and security code.

Oracle 8: Oracle Corporation released ‘Oracle 8’ in 1999, aiming to
provide a much advanced database system. The main function of
Oracle 8 is to design and develop different database objects like
synonyms, indexes, views and tables. With Oracle 8, databases are
installed into any Oracle 8 environment without any modifica-
tions. The release of this version of Oracle 8 offered a database sup-
porting different multimedia applications and object oriented
development.

PostgreSQL(Berkeley, open source): PostgreSQL is an important
database with some potent characteristics. It helps in transaction
support, presentation, performance, and industrial-strength mon-
itoring. PostgreSQL is an open source database and is often
arranged with Linux. It does not offer support for Java procedures.
At present, more than 21 percent of PostgreSQL users combine it
with Windows or Cygwin environments.

Advanced training is not required to learn PostgreSQL. With
PostgreSQL, you can collect a composite knowledge about com-
mands and other basic features. Manipulate and update databas-
es, application of joins, customize queries, consider SQL aggre-
gates, exercise PostgreSQL query tools, combine SELECTs with sub
queries, work with triggers and transactions, import and export
data, can also be done here.

MySQL (Open source): MySQL was released in the middle of 1996.
It is a famous, open source database management system used for
Unix and Linux. While surfing the MySQL database, you can find
an assortment of power and functionality. Simple command sets
used for inserting, recovering, updating and deleting a data can be
used to develop some complex databases and tables.

This database system supports different connection methods
including Unix Sockets, TCP/IP sockets and named pipes for
Windows NT/2000. MySQL can be downloaded free of cost and serv-
er passwords can be allocated by it. It comprises of all the tools
required to get started. It is one of the most stable database man-
agement systems in the market. One of its ISAM table format cre-
ated during the late eighties is one of the important table formats
in MySQL. MySQL is easily accessible and can be manipulated from

143

PHP

www.thinkdigit.com FAST TRACK

PHP AND DATABASES

www.thinkdigit.com

a variety of popular programming languages. When MySQL was
written, it was composed in C and C++, and is wholly optimized for
both the Unix and Win32 platforms. MySQL also uses memory
hash tables, kernel threads, certain high optimized individual col-
lected class libraries and thread based memory portions.

MySQL supports different field types including CHAR, FLOAT,
DOUBLE, DATE, VARCHAR, TEXT, SET, BLOB and ENUM. Certain
advanced querying and grouping functions such as, COUNT(),
GROUP BY and ORDER BY, STD(),AVG(),MAX(),MIN() and SUM() are
also supported here.

11.1 Database concept

The term ‘data’ suggests a record with certain necessary informa-
tion. A database in computer is a structured record collection.
They are stored in computer systems. A database structure is pre-
pared by arranging a data in a database model patterns. There are
three types of databases that are frequently used:
● Relational model
● Hierarchical model
● Network model

A database is organised in a computer with a database man-
agement system. Using this software, a computer performs differ-
ent related functions. These include recovering data, storing,
adding, deleting and modifying data.

An extensive part of a database depends on different managing
factors like integrity, presentation, concurrency and recovery
from hardware failures. We can divide a database management
system into two categories - desktop databases and server databas-
es. The desktop databases are generally targeted towards individ-
ual user application. The server databases target towards the
authenticity and uniformity of a data.

A database is basically of two types - flat file and relational
database.

Flat file: Flat file databases usually store small amounts of data.
They are easily read and edited. Basically, they are arranged in a
series and are accordingly analysed. Flat files are best to store sim-

XI

144

PHP

FAST TRACK

PHP AND DATABASES

XI

ple data types. They may become complicated if you store complex
data structures.

Relational database: The relational model is the most commonly
used database in the present scenario. MySQL, Microsoft SQL
Server and Oracle are best examples of relational databases. In a
relational database, tables are used to represent some interlinked
objects. In the relational model, databases are arranged for main-
taining integrity.

11.2 Database connection:

A database connection is a system that establishes a connec-
tion between the client and database software. This connection
helps in sending commands and getting answers in a result set.
Basically, there are two sources of database connection - data
source and driver manager.

PHP MySQL database connection:
In the following code fragment, you can see mysql_connnect() con-
nects to the MySQL database server.
$ con=mysql_connect(“localhost”, “root”, “password”);

If (! $con)
Die(“Couldn’t connect database”);

Persistent database connection is also a connection method
designed to represent some regular connections. A persistent con-
nection is often used as a substitute for a non persistent connec-
tion. A non-persistent connection may bring change in the script
efficiency but not in its performance.

You can also establish a database connection by using PEAR DB:
<?php
require_once ‘DB.php’;
$dbh =

DB::connect(“mysql://test@localhost/test”);
if (DB::isError($dbh)) {
print “Connect failed!\n”;
print “Error message: “ . $dbh->getMessage() .

“\n”;

145

PHP

www.thinkdigit.com FAST TRACK

PHP AND DATABASES

www.thinkdigit.com

print “Error details: “ . $dbh->getUserInfo() .
“\n”;

exit(1);
}
print “Connect ok!\n

Once you are connected to the database server, select the data-
base to be used. This database should be accessible from your user-
name.

11.3 Creating tables

In order to create tables at first we have to create database. The fol-
lowing code will create a database named “ourdatabase”.

<?php
$con=mysql_connect(“localhost”,”root”);
$create_db=” CREATE DATABASE ourdatabase;”;
mysql_query($create_db,$con) or die (“can not

create database or database already exist”);
?>
After creating the database, select the database

and create table(s) in the database as per require-
ment. The example below will create a table named
“ourtable” having five fields:

<?php
$con=mysql_connect(“localhost”,”root”);
mysql_select_db(“ourdatabase”,$con) or die(“can

not select database or database does not exist”);
$create_table=”CREATE TABLE ourtable (
roll INT NOT NULL ,
name VARCHAR(50) NOT NULL ,
address VARCHAR(100) NOT NULL ,
ph_no VARCHAR(12) NOT NULL ,
grade VARCHAR(2) NOT NULL ,
PRIMARY KEY (roll)
) ;”;
mysql_query($create_table,$con) or die (“can not

create table or table already exist”);
?>

XI

146

PHP

FAST TRACK

PHP AND DATABASES

XI

11.4 Getting information on database:
We all know that a database is a collection of information. With
the help of the mysql_list_dbs() function, you can derive a list of
different databases available from the recent database connection.
Usually all databases begin from 0. The code written below will
provide the entire information about the databases present in a
connection including the names of the databases, names of the
tables present in the database and the list of fields in the corre-
sponding tables:

<?php
$con=mysql_connect(‘localhost’,’root’) or

die(‘Can not connect database’);
$db_list=mysql_list_dbs($con);
$num_db=mysql_num_rows($db_list);
while($select_db=mysql_fetch_object($db_list))
{
echo ‘’.”Database Name :”.’ ’.’’;
echo ‘’.$select_db->Database.’’.’
’;
$db_name=$select_db->Database;
mysql_select_db($db_name,$con) or die(‘Cant find

database’);
$show_tab = “show tables from $db_name”;
$tab_list = mysql_query($show_tab);
$num_tab=mysql_num_rows($tab_list);
echo ‘’.”$select_db->Database contains

$num_tab Tables”.’’.’
’;
$x=1;
while($tab_name=mysql_fetch_row($tab_list))
{
echo “Table $j : “.’ ’;
echo “$tab_name[0]
”.””;
$show_field = “show fields from

“.$tab_name[0].””;
$field_list = mysql_query($show_field) or

die(mysql_error());
$num_field=mysql_num_fields($field_list);
echo “<table border=’1’>”;
echo “<tr align=’center’>”;
for($i=0;$i<$num_field;$i++)
{
echo “<th

147

PHP

www.thinkdigit.com FAST TRACK

PHP AND DATABASES

www.thinkdigit.com

bordercolor=’#000000’>”.mysql_field_name($field_lis
t,$i).”</th>”;

}
echo “</tr>”;
while($field_name=mysql_fetch_row($field_list))
{
echo “<tr>”;
for($i=0;$i<$num_field;$i++)
{
echo “<td bordercolor=’#000000’>”;
echo “$field_name[$i]”;
echo “</td>\n”;
}
echo “</tr>\n”;
}
echo “</table>”;
$x++;
}
echo “
”;
}
?>

11.5 Inserting data to a table

In order to add, change and remove information from a database,
you need to use an HTML form. The HTML forms are used to accept
user input. Then using mysql_query(), the operations on data-
base are performed. Basically, we add data to a database using SQL
INSERT command. This command can be sent to the database
either by using the Query method or by Prepare and Execute
method. Let’s see how a data can be inserted using Prepare and
Execute method.

In the following code, you can see an HTML page with textbox-
es and a submit button to accept user input:

<html>
<head>
<title>
Add New Record
</title>
</head>

XI

148

PHP

FAST TRACK

PHP AND DATABASES

XI

<body bgcolor=”#0099CC”>
<form action=”newrecord.php” method=”post”>
<table align=”center” bgcolor=”#00CC99”>
<caption align=”center”>ADD NEW RECORD</caption>
<tr>
<td align=”center”>Roll:</td>
<td align=”center”><input type=”text”

name=”roll”></td>
</tr>
<tr>
<td align=”center”>Name:</td>
<td align=”center”><input type=”text” name=”

name”></td>
</tr>
<tr>
<td align=”center”>Address:</td>
<td align=”center”><input type=”text”

name=”address”></td>
</tr>
<tr>
<td align=”center”>Phone:</td>
<td align=”center”><input type=”text”

name=”phone”></td>
</tr>
<tr>
<td align=”center”>Grade:</td>
<td align=”center”><input type=”text”

name=”grade”></td>
</tr>
<tr align=”center”>
<table align=”center”>
<tr>
<td align=”center”><input type=”Submit”

name=”submit” value=Add></td>
</tr>
</table>
</tr>
</table>
</form>
</body>
</html>

149

PHP

www.thinkdigit.com FAST TRACK

PHP AND DATABASES

www.thinkdigit.com

The above HTML code will receive the information in text
boxes. After clicking the submit button, the information will be
submitted to the newrecord.php file. This file will then insert the
record in ourtable in ourdatabase using the following code:

newrecord.php
<?php
$con=mysql_connect(“localhost”,”root”);
mysql_select_db(“ourdatabase”,$con) or die(“can

not select database or database does exist”);
$roll=stripslashes(trim($_POST[‘roll’]));
$select_record=”select * from ourtable where

roll=’”.$roll.”’”;
$select_query=mysql_query($select_record) or

die(mysql_error());
if(mysql_num_rows($select_query)==0)
{
$name=stripslashes(trim($_POST[‘name’]));
$address=stripslashes(trim($_POST[‘address’]));
$phone=stripslashes(trim($_POST[‘phone’]));
$grade=stripslashes(trim($_POST[‘grade’]));
$add_new=”insert into

ourtable(roll,name,address,ph_no,grade) values
($roll,’$name’,’$address’,’$phone’,’$grade’)”;

$add_query=mysql_query($add_new) or
die(mysql_error());

if($add_query)
{
echo “New Record Added !!”;
}
}
else
echo “Duplicate Roll Not Allowed”;
?>

It is also possible to create a single file using both HTML and
PHP codes to fulfill the above requirements instead of two sepa-
rate files.

XI

150

PHP

FAST TRACK

PHP AND DATABASES

XI

11.6. Retrieving data from a table
We have learnt about adding information to a database. There are
certain set strategies to recover inserted information from a data-
base. You can use ‘mysql_query ()’ to make a select query. Suppose
you have a record in your database and you want to output it. The
first command for this will be:

SELECT * FROM TABLE NAME;

Here, TABLE NAME represents the name of the table from
where the data will be retrieved.

This is a basic command in MySQL that directs the script to
select all the records in the table. As this command outputs a data,
it should be placed with the results given to a variable.

$query=”SELECT * FROM TABLE NAME”;
$result=mysql_query($query);

The entire content of the table will be stored in the array
$result.

Retrieving data is also recognised with the term SELECT. The
SELECT statement indicates selecting data from a database. See
the following syntax:

SELECT column_name(s) FROM TABLE NAME;

Reconciling the statement above, we can use the
mysql_query() function. With this function, a query or a com-
mand can be sent to a MySQL connection.

Example:
<?php
$con=mysql_connect(“localhost”,”root”);
mysql_select_db(“ourdatabase”,$con) or die(“can

not select database or database does exist”);
$select_query=”SELECT * FROM ourtable”;
$list = mysql_query($select_query);
while($record = mysql_fetch_array($list))
{
echo $record[‘roll’] . “ “ . $record[‘name’].”

“.$record[‘address’] . “ “ .$record[‘ph_no’] . “ “
.$record[‘grade’];

echo “
”;

151

PHP

www.thinkdigit.com FAST TRACK

PHP AND DATABASES

www.thinkdigit.com

}
mysql_close($con);
?>

In the following example, the above data is selected and dis-
played in an HTML table format.

Example:
<?php
$con=mysql_connect(“localhost”,”root”);
mysql_select_db(“ourdatabase”,$con) or die(“can

not select database or database does exist”);
$select_query=”SELECT * FROM ourtable”;
$list = mysql_query($select_query);
echo “<table border=’1’>
<tr>
<th>ROLL</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>PHONE</th>
<th>GRADE</th>
</tr>”;
while($record = mysql_fetch_array($list))
{
e c h o

“<tr><td>”.$record[‘roll’].”</td><td>”.$record[‘nam
e’].”</td><td>”.$record[‘address’].”</td><td>”
.$record[‘ph_no’].”</td><td>”.$record[‘grade’].”</t
d><td></tr>”;

}
echo “</table>”;
mysql_close($con);
?>

11. 7. Changing data of a table

PHP has provisions for changing information in a table. Changing
data and updating data are similar terms. The ‘Update’ statement
intends modifying or changing the present records in a table.
Following syntax can be used to change or update a table record:

UPDATE TABLE_NAME SET column1=value,
column2=value2,...

XI

152

PHP

FAST TRACK

PHP AND DATABASES

XI

WHERE some_column=some_value ;

In the above code the ‘WHERE’ clause indicates the record to
be changed. Look at the example below to gather a practical idea
on updating or changing data in an existing table. Let the table
ourtable contain the following records:

Example:

Roll Name Address Phone Grade
1 John Kolkata 9123456789 A
2 Peter Delhi 9987654321 B
3 Tom Mumbai 9991234567 A
4 Jimi Kolkata 9999121345 C
5 Robin Delhi 9123456999 B

The code given below will change the data of an existing
record:

<?php
$con=mysql_connect(“localhost”,”root”);
mysql_select_db(“ourdatabase”,$con) or die(“can

not select database or database does exist”);
$res=mysql_query(“UPDATE ourtable SET name =

‘Andrew’ WHERE roll = 2”);
if(!$res)
echo “Record not changed”;
else
echo “Record changed”;
mysql_close($con);
?>

The updated table will look like this:

Roll Name Address Phone Grade
1 John Kolkata 9123456789 A
2 Peter Delhi 9987654321 B
3 Andrew Mumbai 9991234567 A
4 Jimi Kolkata 9999123456 C
5 Robin Delhi 9331234567 B

153

PHP

www.thinkdigit.com FAST TRACK

PHP AND DATABASES

www.thinkdigit.com

11.8. Deleting data from a table
Sometimes we need to delete existing information, from a data-
base. Using the ‘DELETE’ statement we can delete a record from a
table. The ‘DELETE FROM’ statement is used to delete records from
a database table. This is almost similar to updating a page.

Following syntax is used to delete information from a table:
DELETE FROM table_name
WHERE some_column = some_value;

You can see the use of the WHERE clause in the above syntax. It
indicates the record to be deleted from a database. Using the
mysql_query() function a query or a command is sent to a
MySQL connection. Look at the example:

Example:

See, how the records of ourtable are deleted in the example
below:

<?php
$con=mysql_connect(“localhost”,”root”);
mysql_select_db(“ourdatabase”,$con) or die(“can

not select database or database does exist”);
$res=mysql_query(“DELETE from ourtable WHERE roll

= 5”);
if(!$res)
echo “Record not deleted”;
else
echo “Record deleted”;
mysql_close($con);
?>

After the information are deleted the fresh table looks like this:

Roll Name Address Phone Grade
1 John Kolkata 9282828221 A
2 Peter Delhi 9876221112 B
3 Andrew Mumbai 9764646311 A
5 Robin Delhi 9576564322 B

XI

154

PHP

FAST TRACK

PHP AND DATABASES

Here we have given a small project in which we will see how a data-
base is manipulated using PHP. At first we have to create a data-
base. In this project the name of the database is "ourdb". We can
create the database using the following program:

createdb.php
<?php
$host="localhost";
$username="root";
$password="";
mysql_connect($host,$username,$password) or
die("Could not connect database");
if(!mysql_select_db("ourdb"))
{
$createdb="CREATE DATABASE ourdb";
mysql_query($createdb) or die("Can't create
database");
}
else
echo "Database already exists";
?>

The above database will be required almost in every file in this
project. So we have included a special file in all our project files.
The special file is given below:

connection.php
<?php
$host="localhost";
$username="root";
$password="";
$databasename="ourdb";
connect=mysql_connect($host,$username,$password)
or die("Cannot Caonnect to database");
mysql_select_db($databasename,$connect) or die
("Cannot find database");
?>

155www.thinkdigit.com FAST TRACK

PHP project

www.thinkdigit.com

In this project we will use two tables. One table will be used to
store category details and another to store details of products. The
table structures are given below:

tblcatagory
Field Type Null Primary Key
cat_id int(11) Yes Yes
cat_name varchar(40) Yes No

tblproduct
Field Type Null Primary Key
prod_id int(11) Yes Yes
prod_name varchar(255) Yes No
cat_id int(11) Yes No
prod_img_path varchar(255) Yes No
comp_name varchar(40) Yes No
model varchar(20) Yes No
prod_desc varchar(255) Yes No
rate Float Yes No

To create the tables we can use the following program:

createtable.php
<?php
include_once "connection.php";
$tblcatagory="CREATE TABLE `tblcatagory` (
`cat_id` int(11) NOT NULL,
`cat_name` varchar(40) NOT NULL,
PRIMARY KEY (`cat_id`)
);";
mysql_query($tblcatagory) or die(mysql_error());
$tblproduct="CREATE TABLE `tblproduct` (
`prod_id` int(11) NOT NULL,
`prod_name` varchar(255) NOT NULL,
`cat_id` int(11) NOT NULL,
`prod_img_path` varchar(255) NOT NULL,
`comp_name` varchar(40) NOT NULL,
`model` varchar(20) NOT NULL,
`prod_desc` varchar(255) NOT NULL,
`rate` float NOT NULL,
PRIMARY KEY (`prod_id`)

XII

156

PHP

FAST TRACK

PHP PROJECT

XII

);";
mysql_query($tblproduct) or die(mysql_error());
?>

In our project the first page will provide the user some options
like add new category, display category details, add new product
and display product details. Since this will be the home page its
name will be index.php.

Index.php
<html>
<head>
<title>Select Your Choice</title>
</head>
<body bgcolor="#BBE8B0">
<h2 align="center">Select Any Option</h2>
<hr align="center" size="4" color="#660060"
width="100%" />

<p align="center">Add
New Catagory</p>

<p align="center">Display all
catagories</p>

<p align="center">Add
New Product</p>

<p align="center">Display all products
details</p>

</body>
</html>

This is simple HTML page.
There are some php files used in anchor tag of the above code.

These files have special purposes.
The first file that used in anchor tag is AddCatagory.php. This

file is used to enter new category. The code is given below:

157

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

AddCatagory.php
<?php
include_once "connection.php";
if(isset($_POST['Add']) && $_POST['Add']=='Add
Catagory')
{
if($_POST['cat_id']!='' &&
$_POST['cat_name']!='')
{
$cat_id=stripslashes($_POST['cat_id']);
$cat_name=stripslashes($_POST['cat_name']);
$select_catagory="select * from tblcatagory
where cat_name='".$cat_name."' or
cat_id='".$cat_id."'";
$select_query=mysql_query($select_catagory) or
die(mysql_error());
if(mysql_num_rows($select_query)==0)
{
$insert_catagory="insert into tblcatagory
(cat_id, cat_name) values($cat_id,'$cat_name')";
$insert_query=mysql_query($insert_catagory) or
die (mysql_error());
if($insert_query)
{
$msg="New catagory has been added!!";
}
}
else {$msg="Catagory Id or Catagory name already
exists!!";}
}
}
?>
<html>
<head>
<title>Enter New Catagory</title>
</head>
<body bgcolor="#FFCE9D">
<h3 align="center">Add New Catagory</h3>
<hr align="center" size="4" color="#990000"
width="100%" />
<p align="center"><?php echo $msg;?></p>

XII

158

PHP

FAST TRACK

PHP PROJECT

XII

<table width="100%" border="0">
<tr>
<td width="28%">
<table width="98%" border="0">
<tr>
<td align="center">Add
New Catagory</td>
</tr>
<tr>
<td align="center">Display
catagories</td>
</tr>
<tr>
<td align="center">Add
New Product</td>
</tr>
<tr>
<td align="center">Display
products</td>
</tr>
<tr>
<td align="center"><a href="index1.php"
style="color:#FF0000">Main Page</td>
</tr>
</table>
</td>
<td width="72%">
<form method="post" name="frm1">
<table width="50%" border="0" cellspacing="0"
cellpadding="0" align="center">
<tr>
<td width="50%" style="font-size:20px">Catagory
Id:</td>
<td width="50%" align="left"><input type="text"
name="cat_id" maxlength="50" /></td>
</tr>
<tr>
<td width="50%" style="font-size:20px">Catagory
Name:</td>

159

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

<td width="50%" align="left"><input type="text"
name="cat_name" maxlength="50" /></td>
</tr>
</table>

<table align="center">
<tr>
<td align="center"><input type="submit"
name="Add" value="Add Catagory" /></td>
</tr>
</table>
</form>
</td>
</tr>
</table>
</body>
</html>

Next file is used to display the list of categories stored in
tblcatagory.

DisplayCatagories.php
<?php
include_once "connection.php";
if(isset($_GET['delete']) &&
$_GET['delete']=='yes')
{
$delete_qury1="delete from tblproduct where
cat_id='".$_GET['cat_id']."'";
mysql_query($delete_qury1) or
die(mysql_error());
$delete_qury2="delete from tblcatagory where
cat_id='".$_GET['cat_id']."'";
mysql_query($delete_qury2) or
die(mysql_error());
}
$select1="select * from tblcatagory";
$select_query1=mysql_query($select1) or
die(mysql_error());
?>
<html>

XII

160

PHP

FAST TRACK

PHP PROJECT

XII

<head>
<title>Display all catagories</title>
</head>
<body bgcolor="#FFC4C4">
<h2 align="center">Display all Catagories </h2>
<hr align="center" size="4" color="#990000"
width="100%" />
<p align="center"><?php echo $msg;?></p>
<table width="100%" border="0">
<tr>
<td width="28%">
<table width="98%" border="0">
<tr>
<td align="center">Add
New Catagory</td>
</tr>
<tr>
<td align="center">Display
catagories</td>
</tr>
<tr>
<td align="center">Add
New Product</td>
</tr>
<tr>
<td align="center">Display
products</td>
</tr>
<tr>
<td align="center">Main
Page</td>
</tr>
</table>
</td>
<td width="72%">
<table width="100%" border="1">
<tr>
<td width="12%">Catagory name</td>
<td width="6%">Edit</td>

161

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

<td width="11%">Delete</td>
</tr>
</table>
<table width="100%" border="1">
<?php
while($data1=mysql_fetch_object($select_query1))
{ ?>
<tr>
<td width="12%"><?php echo $data1->cat_name
?></td>
<td width="6%"><a
href="EditCatagories.php?cat_id=<?php echo
$data1->cat_id?>">Edit</td>
<td width="11%"><a
href="DisplayCatagories.php?delete=yes&cat_id=<?
php echo $data1->cat_id ?>">Delete</td>
</tr>
<?php } ?>
</table>
</td>
</tr>
</table>
</body>
</html>

Within another file "EditCatagories.php" is called. This file is
written for editing the existing records of tblproduct. User can
also delete any record from tblcatagory using the link "Delete".

EditCatagories.php
<?php
include_once "connection.php";
if(isset($_GET['delete']) &&
$_GET['delete']=='yes')
{
$delete_qury1="delete from tblproduct where
cat_id='".$_GET['cat_id']."'";
mysql_query($delete_qury1) or
die(mysql_error());
$delete_qury2="delete from tblcatagory where
cat_id='".$_GET['cat_id']."'";

XII

162

PHP

FAST TRACK

PHP PROJECT

XII

mysql_query($delete_qury2) or
die(mysql_error());
}
$select1="select * from tblcatagory";
$select_query1=mysql_query($select1) or
die(mysql_error());
?>
<html>
<head>
<title>Display all catagories</title>
</head>
<body bgcolor="#FFC4C4">
<h2 align="center">Display all Catagories </h2>
<hr align="center" size="4" color="#990000"
width="100%" />
<p align="center"><?php echo $msg;?></p>
<table width="100%" border="0">
<tr>
<td width="28%">
<table width="98%" border="0">
<tr>
<td align="center">Add
New Catagory</td>
</tr>
<tr>
<td align="center">Display
catagories</td>
</tr>
<tr>
<td align="center">Add
New Product</td>
</tr>
<tr>
<td align="center">Display
products</td>
</tr>
<tr>
<td align="center">Main
Page</td>

163

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

</tr>
</table>
</td>
<td width="72%">
<table width="100%" border="1">
<tr>
<td width="12%">Catagory name</td>
<td width="6%">Edit</td>
<td width="11%">Delete</td>
</tr>
</table>
<table width="100%" border="1">
<?php
while($data1=mysql_fetch_object($select_query1))
{ ?>
<tr>
<td width="12%"><?php echo $data1->cat_name
?></td>
<td width="6%"><a
href="EditCatagories.php?cat_id=<?php echo
$data1->cat_id?>">Edit</td>
<td width="11%"><a
href="DisplayCatagories.php?delete=yes&cat_id=<?
php echo $data1->cat_id ?>">Delete</td>
</tr>
<?php } ?>
</table>
</td>
</tr>
</table>
</body>
</html>
To add new product the following file is used:
AddProduct.php
<?php
include_once "connection.php";
$select_catagory="select * from tblcatagory";
$select_query=mysql_query($select_catagory) or
die(mysql_error());
if(isset($_POST['Add']) && ($_POST['Add']=='Add
Product'))

XII

164

PHP

FAST TRACK

PHP PROJECT

XII

{
if($_POST['cat_name']!='select' &&
$_POST['comp_name']!='' && $_POST['model']!=''
&& $_POST['prod_desc']!='' &&
$_POST['rate']!='')
{
$cat_name=stripslashes(trim($_POST['cat_name']))
;
$prod_id=stripslashes(trim($_POST['prod_id']));
$prod_name=stripslashes(trim($_POST['prod_name']
));
$comp_name=stripslashes(trim($_POST['comp_name']
));
$model=stripslashes(trim($_POST['model']));
$prod_desc=stripslashes(trim($_POST['prod_desc']
));
$rate=stripslashes(trim($_POST['rate']));
$select_catagory2="select * from tblcatagory
where cat_name='".$cat_name."'";
$select_query2=mysql_query($select_catagory2) or
die(mysql_error());
$result_cat_id=mysql_fetch_object($select_query2
);
$cat_id=$result_cat_id->cat_id;
$select_product="select * from tblproduct where
model='".$model."'";
$select_query3=mysql_query($select_product) or
die(mysql_error());
if(is_dir("img"))
mkdir("img");
if(mysql_num_rows($select_query3)==0)
{
$img_name=$_FILES['file']['name'];
$img_tmp_name=$_FILES['file']['tmp_name'];
$prod_img_path=time().$img_name.'.jpg';
if($img_name!='')
{
move_uploaded_file($img_tmp_name,"img/".$prod_im
g_path);
$insert_product="insert into
tblproduct(prod_id,prod_name,cat_id,prod_img_pat

165

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

h,comp_name,model,prod_desc,rate) values
($prod_id,'$prod_name',$cat_id,'$prod_img_path',
'$comp_name','$model','$prod_desc',$rate)";
$insert_query=mysql_query($insert_product) or
die(mysql_error());
if($insert_query)
{
$msg="New Product Details Added !!";
}
}
}
else {$msg="Model no can't be unique !!";}
}
}
?>
<html>
<head>
<title>Add Product</title>
</head>
<body bgcolor="#E0C6F0">
<h3 align="center">Add New Product Details</h3>
<hr align="center" size="4" color="#990000"
width="768" />
<h4 align="center"><?php echo $msg ?></h4>
<table width="100%" border="0">
<tr>
<td width="25%">
<table width="98%" border="0">
<tr>
<td align="center"><a href="AddCatagory.php"
>Add New Catagory</td>
</tr>
<tr>
<td align="center">Display
catagories</td>
</tr>
<tr>
<td align="center">Add
New Product</td>
</tr>

XII

166

PHP

FAST TRACK

PHP PROJECT

XII

<tr>
<td align="center">Display
products</td>
</tr>
<tr>
<td align="center">Main
Page</td>
</tr>
</table>
</td>
<td width="75%">
<form name="frm" method="post" enctype="multi-
part/form-data">
<table width="606" border="0" align="center"
cellspacing="5">
<tr>
<td>Product Id:</td>
<td>
<input type="text" name="prod_id" />
</td>
</tr>
<tr>
<td>Product Name:</td>
<td>
<input type="text" name="prod_name" />
</td>
</tr>
<tr>
<td width="305">Image path of the Product:</td>
<td width="282"><input type="file" name="file"
/></td>
</tr>
<tr>
<td>Catagory:</td>
<td>
<select name="cat_name">
<?php
while($catagory_dls=mysql_fetch_object($select_q
uery)) { ?>
<option value="<?php echo $catagory_dls-

167

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

>cat_name?>"><?php echo $catagory_dls-
>cat_name?></option>
<?php } ?>
</select>
</td>
</tr>
<tr>
<td>Company Name:</td>
<td>
<input type="text" name="comp_name" />
</td>
</tr>
<tr>
<td>Model:</td>
<td><input type="text" name="model" /></td>
</tr>
<tr>
<td>Description:</td>
<td><textarea name="prod_desc" rows="5"
cols="40"></textarea></td>
</tr>
<tr>
<td>Rate:</td>
<td><input type="text" name="rate" /></td>
</tr>
</table>
<table width="564" border="0" align="center"
cellspacing="5">
<tr>
<td align="center"><input type="submit"
name="Add" value="Add Product" /></td>
</tr>
</table>
</form>
</td>
</tr>
</table>
</body>
</html>

XII

168

PHP

FAST TRACK

PHP PROJECT

XII

The following will be used to see the records stored in the table
"tblproduct ".

DisplayProducts.php
<?php
include_once "connection.php";
if(isset($_GET['delete']) &&
$_GET['delete']=='yes')
{
$delete_qury="delete from tblproduct where
prod_id='".$_GET['prod_id']."'";
mysql_query($delete_qury) or die(mysql_error());
}
$select1="select * from tblproduct";
$select_query1=mysql_query($select1) or
die(mysql_error());
?>
<html>
<head>
<title>Display All Products</title>
</head>
<body bgcolor="#FFFFBF">
<table width="120%" border="0">
<tr>
<td width="20%">
<table width="83%" border="0">
<tr>
<td align="center"><a href="AddCatagory.php"
>Add New Catagory</td>
</tr>
<tr>
<td align="center">Display
catagories</td>
</tr>
<tr>
<td align="center">Add
New Product</td>
</tr>
<tr>
<td align="center"><a

169

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

href="DisplayProducts.php">Display
products</td>
</tr>
<tr>
<td align="center">Main
Page</td>
</tr>
</table>
</td>
<td width="100%">
<table width="100%" border="1">
<caption align="center">
<h2 align="center">Display All Products</h2>
<hr align="center" size="4" color="#990000"
width="768" />
<tr>
<td width="10%">Product Name</td>
<td width="10%">Product Image</td>
<td width="12%">Catagory</td>
<td width="25%">Product description</td>
<td width="9%">Price</td>
<td width="6%">Edit</td>
<td width="11%">Delete</td>
</tr>
<?php
while($data1=mysql_fetch_object($select_query1))
{ ?>
<input type="hidden" name="prod_id" value="" />
<tr>
<td width="12%"><?php echo $data1->prod_name
?></td>
<td width="23%" height="77"><img src="img\<?php
echo $data1->prod_img_path ?>" height="60"
width="60" />

<p><?php echo $data1->comp_name.' '. $data1-
>model; ?></P></td>
<?php
$select_catagory2="select * from tblcatagory
where cat_id='".$data1->cat_id."'";
$select_query2=mysql_query($select_catagory2) or
die(mysql_error());

XII

170

PHP

FAST TRACK

PHP PROJECT

XII

$result_cat_name=mysql_fetch_object($select_quer
y2);
$cat_name=$result_cat_name->cat_name;
?>
<td width="12%"><?php echo $cat_name ?></td>
<td width="25%"><?php echo $data1->prod_desc
?></td>
<td width="9%"><?php echo $data1->rate ?></td>
<td width="6%"><a
href="EditProducts.php?prod_id=<?php echo
$data1->prod_id ?>&cat_id=<?php echo $data1-
>cat_id?>" style="color:#FF0000">Edit</td>
<td width="11%"><a
href="DisplayProducts.php?delete=yes&prod_id=<?p
hp echo $data1->prod_id ?>">Delete</td>
</tr>
<?php } ?>
</table>
</td>
</tr>
</table>
</body>
</html>

In this file there is a link "Edit". If user clicks this link the file
"EditProducts.php" will be called. The record of the table "tblprod-
uct" can be edited by this file. User can also delete any record from
tblproduct using the link "Delete".

EditProducts.php
<?php
include_once "connection.php";
$cat_id=$_REQUEST['cat_id'];
if(isset($_POST['update_data']) &&
($_POST['update_data']=='update_data'))
{
if(isset($_POST['Edit']) &&
($_POST['Edit']=='Edit Product'))
{
if($_POST['cat_name']!='' &&
$_POST['comp_name']!='' && $_POST['model']!=''

171

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

&& $_POST['prod_desc']!='' &&
$_POST['rate']!='')
{
$cat_name=$_POST['cat_name'];
$prod_name=stripslashes(trim($_POST['prod_name']
));
$select_catagory2="select * from tblcatagory
where cat_name='".$cat_name."'";
$select_query2=mysql_query($select_catagory2) or
die(mysql_error());
$result_cat_id=mysql_fetch_object($select_query2
);
$cat_id=$result_cat_id->cat_id;
$comp_name=stripslashes(trim($_POST['comp_name']
));
$model=stripslashes(trim($_POST['model']));
$prod_desc=stripslashes(trim($_POST['prod_desc']
));
$rate=stripslashes(trim($_POST['rate']));
$insert_query="update tblproduct set
cat_id='$cat_id',comp_name='$comp_name',model='$
model',prod_desc='$prod_desc',rate=$rate where
prod_id='".$_REQUEST['prod_id']."'";
$result=mysql_query($insert_query) or
die(mysql_error());
if($result)
{
$msg1="Product Info Updated !!";
}
}
}
}
if(isset($_POST['update_picture']) &&
($_POST['update_picture']=='update_picture'))
{
if(isset($_POST['Edit_Pic']) &&
($_POST['Edit_Pic']=='Change Picture'))
{
$img_name=$_FILES['file']['name'];
$img_tmp_name=$_FILES['file']['tmp_name'];
$prod_img_path=time().$img_name.'.jpg';

XII

172

PHP

FAST TRACK

PHP PROJECT

XII

if($img_name!='')
{
$select_img="select * from tblproduct where
prod_id='".$_REQUEST['prod_id']."'";
$qry=mysql_query($select_img) or die
(mysql_error());
$res=mysql_fetch_object($qry);
if(file_exists("img/".$res->prod_img_path))
{
unlink("img/".$res->prod_img_path);
}
move_uploaded_file($img_tmp_name,"img/".$prod_im
g_path);
$insert_query="update tblproduct set
prod_img_path='$prod_img_path' where
prod_id='".$_REQUEST['prod_id']."'";
$result=mysql_query($insert_query) or
die(mysql_error());
if($result)
{
$msg2="Picture Updated !!";
}
}
}
}
$query="select * from tblproduct where
prod_id='".$_REQUEST['prod_id']."'";
$result=mysql_query($query) or
die(mysql_error());
$data=mysql_fetch_object($result);
$select_catagory="select * from tblcatagory";
$select_query_catagory=mysql_query($select_catag
ory) or die(mysql_error());
?>
<html>
<head>
<title>Update Products</title>
</head>
<body bgcolor="#FFD3A8">
<h2 align="center">Edit Product Details</h2>
<hr align="center" size="4" color="#990000"

173

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

width="328" />
<h3 align="center"><?php echo $msg1
?></h3>
<table width="100%" border="0">
<tr>
<td width="22%">
<table width="100%" border="0">
<tr>
<td align="center"><a href="AddCatagory.php"
>Add New Catagory</td>
</tr>
<tr>
<td align="center">Display
catagories</td>
</tr>
<tr>
<td align="center">Add
New Product</td>
</tr>
<tr>
<td align="center">Display
products</td>
</tr>
<tr>
<td align="center">Main
Page</td>
</tr>
</table>
</td>
<td width="78%">
<form name="frm" method="post" enctype="multi-
part/form-data">
<input type="hidden" name="update_data"
value="update_data" />
<table width="623" border="0" align="center"
cellspacing="5">
<tr>
<td>Product Name:</td>
<td>

XII

174

PHP

FAST TRACK

PHP PROJECT

XII

<input type="text" name="prod_name" value="<?php
echo $data->prod_name ?>"/></td>
</tr>
<tr>
<td>Catagory:</td>
<td>
<select name="cat_name">
<?php
while($data_catagory=mysql_fetch_object($select_
query_catagory)) { ?>
<option value="<?php echo $data_catagory-
>cat_name?>" <?php if($data_catagory-
>cat_name==$cat_name) {echo 'selected';
}?>><?php echo $data_catagory-
>cat_name?></option>
<?php } ?>
</select>
</td>
</tr>
<tr>
<td>Company Name:</td>
<td>
<input type="text" name="comp_name" value="<?php
echo $data->comp_name ?>"/></td>
</tr>
<tr>
<td>Model:</td>
<td><input type="text" name="model" value="<?php
echo $data->model ?>" /></td>
</tr>
<td>Description:</td>
<td><textarea name="prod_desc" rows="5"
cols="40"><?php echo $data->prod_desc
?></textarea></td>
</tr>
<tr>
<td>Rate:</td>
<td><input type="text" name="rate" value="<?php
echo $data->rate ?>" /></td>
</tr>
</table>

175

PHP

www.thinkdigit.com FAST TRACK

PHP PROJECT

www.thinkdigit.com

<table width="564" border="0" align="center"
cellspacing="5">
<tr>
<td align="center"><input type="submit"
name="Edit" value="Edit Product" /></td>
</tr>
</table>
</form>

<h2 align="center">Change Product Picture</h2>
<hr align="center" size="4" color="#990000"
width="368" />
<h3 align="center"><?php echo $msg2
?></h3>
<form method="post" name="frm2" enctype="multi-
part/form-data">
<input type="hidden" name="update_picture"
value="update_picture" />
<table width="623" border="0" align="center"
cellspacing="5">
<tr>
<td width="218">Change Picture:</td>
<td width="380"><input type="file" name="file"
/></td>
</tr>
</table>

<div align="center"><input type="submit"
name="Edit_Pic" value="Change Picture" /></div>
</form>
</td>
</tr>
</table>
</body>
</html>

To run this project at first you have to create the database and
the tables using the programs described above. Then only you can
run this project successfully. If you have "wamp" installed in your
system, then you can create all these files described above in a
folder within "www" folder. Then you will be able to run this proj-
ect from "localhost".

XII

176

PHP

FAST TRACK

PHP PROJECT

Backcover.qxd 12/16/2008 5:17 PM Page 1

	0901_FT_PHP
	`00Cover
	00_Initial Pages
	Chapter-01
	Chapter-02
	Chapter-03
	Chapter-04
	Chapter-05
	Chapter-06
	Chapter-07
	Chapter-08
	Chapter-09
	Chapter-10
	Chapter-11
	Chapter-12

	backcover

